探索情感趋势:网民对 Google Play 商店社交媒体评论的深度学习分析

Rosa Eliviani, Dwi Diana Wazaumi
{"title":"探索情感趋势:网民对 Google Play 商店社交媒体评论的深度学习分析","authors":"Rosa Eliviani, Dwi Diana Wazaumi","doi":"10.59395/ijadis.v5i1.1318","DOIUrl":null,"url":null,"abstract":"This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.","PeriodicalId":483284,"journal":{"name":"International Journal of Advances in Data and Information Systems","volume":"127 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Sentiment Trends: Deep Learning Analysis of Social Media Reviews on Google Play Store by Netizens\",\"authors\":\"Rosa Eliviani, Dwi Diana Wazaumi\",\"doi\":\"10.59395/ijadis.v5i1.1318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.\",\"PeriodicalId\":483284,\"journal\":{\"name\":\"International Journal of Advances in Data and Information Systems\",\"volume\":\"127 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Data and Information Systems\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.59395/ijadis.v5i1.1318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Data and Information Systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.59395/ijadis.v5i1.1318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用长短期记忆(LSTM)算法对 Instagram 应用程序评论进行情感分析。应用商店的兴起改变了数字互动,尤其是社交媒体应用。利用 LSTM,我们旨在了解用户在 Instagram 应用评论中表达的情绪,为提升用户体验和解决用户关切提供见解。该方法包括数据抓取、预处理、LSTM 模型训练和评估指标。我们的研究结果表明,在准确识别用户情感方面取得了可喜的成果,准确率为 77.77%,精确度为 0.45,召回率为 0.089,F1 分数为 0.15。这项研究强调了情感分析在理解用户反馈方面的重要性及其对应用程序开发和用户参与的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring Sentiment Trends: Deep Learning Analysis of Social Media Reviews on Google Play Store by Netizens
This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信