{"title":"探索情感趋势:网民对 Google Play 商店社交媒体评论的深度学习分析","authors":"Rosa Eliviani, Dwi Diana Wazaumi","doi":"10.59395/ijadis.v5i1.1318","DOIUrl":null,"url":null,"abstract":"This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.","PeriodicalId":483284,"journal":{"name":"International Journal of Advances in Data and Information Systems","volume":"127 49","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring Sentiment Trends: Deep Learning Analysis of Social Media Reviews on Google Play Store by Netizens\",\"authors\":\"Rosa Eliviani, Dwi Diana Wazaumi\",\"doi\":\"10.59395/ijadis.v5i1.1318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.\",\"PeriodicalId\":483284,\"journal\":{\"name\":\"International Journal of Advances in Data and Information Systems\",\"volume\":\"127 49\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advances in Data and Information Systems\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.59395/ijadis.v5i1.1318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advances in Data and Information Systems","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.59395/ijadis.v5i1.1318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Exploring Sentiment Trends: Deep Learning Analysis of Social Media Reviews on Google Play Store by Netizens
This study explores sentiment analysis of Instagram app reviews using Long Short-Term Memory (LSTM) algorithms. The rise of app stores has transformed digital interactions, particularly for social media apps. Leveraging LSTM, we aim to understand user sentiments expressed in Instagram application reviews, offering insights to enhance user experience and address concerns. The methodology involves data crawling, preprocessing, LSTM model training, and evaluation metrics. Our findings reveal promising results in accurately identifying user sentiments, with an accuracy of 77.77%, precision of 0.45, recall of 0.089, and F1-score of 0.15. This study underscores the importance of sentiment analysis in understanding user feedback and its implications for app development and user engagement.