制作灾难驱动的统计数据:战略抽样模型

Syed Shahadat Hossain, Md Rafiqul Islam
{"title":"制作灾难驱动的统计数据:战略抽样模型","authors":"Syed Shahadat Hossain, Md Rafiqul Islam","doi":"10.3329/ijss.v24i1.72017","DOIUrl":null,"url":null,"abstract":"This article details the development and implementation of a strategic sampling methodology aimed at enhancing disaster-related statistics in Bangladesh. The study focuses on creating a specialized sampling frame by conducting a comprehensive census of enumeration areas (mouzas) affected by natural disasters. Employing a two-stage random sampling technique, the methodology incorporates stratification at district and disaster-type levels to capture diverse disaster occurrences. The Kish allocation method is utilized for sample allocation, addressing disparities in district sizes. Through meticulous trial and error simulations, the study ensures minimum sample sizes within each domain while employing inverse probability weights to estimate parameters. This strategic approach adopts robust estimations, enriching insights into disaster-related statistics.\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 49-64","PeriodicalId":512956,"journal":{"name":"International Journal of Statistical Sciences","volume":"136 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crafting Disaster-Driven Statistics: A Strategic Sampling Model\",\"authors\":\"Syed Shahadat Hossain, Md Rafiqul Islam\",\"doi\":\"10.3329/ijss.v24i1.72017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article details the development and implementation of a strategic sampling methodology aimed at enhancing disaster-related statistics in Bangladesh. The study focuses on creating a specialized sampling frame by conducting a comprehensive census of enumeration areas (mouzas) affected by natural disasters. Employing a two-stage random sampling technique, the methodology incorporates stratification at district and disaster-type levels to capture diverse disaster occurrences. The Kish allocation method is utilized for sample allocation, addressing disparities in district sizes. Through meticulous trial and error simulations, the study ensures minimum sample sizes within each domain while employing inverse probability weights to estimate parameters. This strategic approach adopts robust estimations, enriching insights into disaster-related statistics.\\nInternational Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 49-64\",\"PeriodicalId\":512956,\"journal\":{\"name\":\"International Journal of Statistical Sciences\",\"volume\":\"136 44\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Statistical Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/ijss.v24i1.72017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Statistical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/ijss.v24i1.72017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文详细介绍了旨在加强孟加拉国灾害相关统计的战略抽样方法的制定和实施情况。研究的重点是通过对受自然灾害影响的查点区(mouzas)进行全面普查,建立专门的抽样框架。该方法采用两阶段随机抽样技术,在地区和灾害类型层面进行分层,以捕捉不同的灾害发生情况。样本分配采用基什分配法,以解决地区规模不均的问题。通过细致的试验和误差模拟,该研究确保了每个领域内的最小样本量,同时采用反概率加权法估算参数。这一战略性方法采用了稳健的估算,丰富了对灾害相关统计数据的认识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Crafting Disaster-Driven Statistics: A Strategic Sampling Model
This article details the development and implementation of a strategic sampling methodology aimed at enhancing disaster-related statistics in Bangladesh. The study focuses on creating a specialized sampling frame by conducting a comprehensive census of enumeration areas (mouzas) affected by natural disasters. Employing a two-stage random sampling technique, the methodology incorporates stratification at district and disaster-type levels to capture diverse disaster occurrences. The Kish allocation method is utilized for sample allocation, addressing disparities in district sizes. Through meticulous trial and error simulations, the study ensures minimum sample sizes within each domain while employing inverse probability weights to estimate parameters. This strategic approach adopts robust estimations, enriching insights into disaster-related statistics. International Journal of Statistical Sciences, Vol.24(1), March, 2024, pp 49-64
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信