{"title":"基于灰度共现矩阵的肺炎检测全卷积神经网络模型","authors":"Shubhra Prakash, B. Ramamurthy","doi":"10.32985/ijeces.15.4.7","DOIUrl":null,"url":null,"abstract":"This study presents a new method to improve the detection ability of a convolutional neural network (CNN) in pneumonia detection using chest X-ray images. Using Gray-Level Co-occurrence Matrix (GLCM) analysis, additional channels are added to the original image data provided by Guangzhou Children's Hospital in Guangzhou, China. The main goal is to design a lightweight, fully convolution network and increase its available information using GLCM. Performance analysis is performed on the new CNN model and GLCM-enhanced CNN model, and results are compared with Transfer Learning approaches. Various evaluation metrics, including accuracy, precision, recall, F1 score, and AUC-ROC, are used to evaluate the improved analysis performance of CNN. The results showed a significant increase in the ability of the model to detect pneumonia, with an accuracy of 99.57%. In addition, the study evaluates the descriptive properties of the CNN model by analyzing its decision process using Grad-CAM.","PeriodicalId":507791,"journal":{"name":"International journal of electrical and computer engineering systems","volume":"5 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gray Level Co-occurrence Matrix based Fully Convolutional Neural Network Model for Pneumonia Detection\",\"authors\":\"Shubhra Prakash, B. Ramamurthy\",\"doi\":\"10.32985/ijeces.15.4.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents a new method to improve the detection ability of a convolutional neural network (CNN) in pneumonia detection using chest X-ray images. Using Gray-Level Co-occurrence Matrix (GLCM) analysis, additional channels are added to the original image data provided by Guangzhou Children's Hospital in Guangzhou, China. The main goal is to design a lightweight, fully convolution network and increase its available information using GLCM. Performance analysis is performed on the new CNN model and GLCM-enhanced CNN model, and results are compared with Transfer Learning approaches. Various evaluation metrics, including accuracy, precision, recall, F1 score, and AUC-ROC, are used to evaluate the improved analysis performance of CNN. The results showed a significant increase in the ability of the model to detect pneumonia, with an accuracy of 99.57%. In addition, the study evaluates the descriptive properties of the CNN model by analyzing its decision process using Grad-CAM.\",\"PeriodicalId\":507791,\"journal\":{\"name\":\"International journal of electrical and computer engineering systems\",\"volume\":\"5 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrical and computer engineering systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32985/ijeces.15.4.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrical and computer engineering systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32985/ijeces.15.4.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gray Level Co-occurrence Matrix based Fully Convolutional Neural Network Model for Pneumonia Detection
This study presents a new method to improve the detection ability of a convolutional neural network (CNN) in pneumonia detection using chest X-ray images. Using Gray-Level Co-occurrence Matrix (GLCM) analysis, additional channels are added to the original image data provided by Guangzhou Children's Hospital in Guangzhou, China. The main goal is to design a lightweight, fully convolution network and increase its available information using GLCM. Performance analysis is performed on the new CNN model and GLCM-enhanced CNN model, and results are compared with Transfer Learning approaches. Various evaluation metrics, including accuracy, precision, recall, F1 score, and AUC-ROC, are used to evaluate the improved analysis performance of CNN. The results showed a significant increase in the ability of the model to detect pneumonia, with an accuracy of 99.57%. In addition, the study evaluates the descriptive properties of the CNN model by analyzing its decision process using Grad-CAM.