A. Kozlovskiy, Sholpan G. Giniyatova, D. Shlimas, D. Borgekov, Ruslan M. Rspayev, M. Zdorovets
{"title":"研究在 CeO2 陶瓷中掺入稳定添加剂 Y2O3 对重离子高温辐照下陶瓷强度和热物理参数变化的影响","authors":"A. Kozlovskiy, Sholpan G. Giniyatova, D. Shlimas, D. Borgekov, Ruslan M. Rspayev, M. Zdorovets","doi":"10.3390/cryst14040320","DOIUrl":null,"url":null,"abstract":"The article outlines findings from a comparative analysis of the effectiveness of doping CeO2 ceramics with a stabilizing additive Y2O3 on alterations in the strength and thermophysical parameters of ceramics under high-temperature irradiation with heavy ions comparable in energy to fission fragments of nuclear fuel, which allows, during high-temperature irradiation, to simulate radiation damage that is as similar as possible to the fission processes of nuclear fuel. During the studies, it was found that the addition of a stabilizing additive Y2O3 to the composition of CeO2 ceramics in the case of high-temperature irradiation causes an increase in stability to swelling and softening because of a decrease in the thermal expansion of the crystal lattice by 3–8 times in comparison with unstabilized CeO2 ceramics. It has been determined that the addition of a stabilizing additive Y2O3 leads not only to a rise in the resistance of the crystal structure to deformation distortions and swelling, but also to a decrease in the effect of thermal expansion of the crystal structure, which has an adverse effect on the structural ordering of CeO2 ceramics exposed to irradiation at high temperatures.","PeriodicalId":505131,"journal":{"name":"Crystals","volume":"38 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Influence of Doping Efficiency of CeO2 Ceramics with a Stabilizing Additive Y2O3 on Changes in the Strength and Thermophysical Parameters of Ceramics under High-Temperature Irradiation with Heavy Ions\",\"authors\":\"A. Kozlovskiy, Sholpan G. Giniyatova, D. Shlimas, D. Borgekov, Ruslan M. Rspayev, M. Zdorovets\",\"doi\":\"10.3390/cryst14040320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article outlines findings from a comparative analysis of the effectiveness of doping CeO2 ceramics with a stabilizing additive Y2O3 on alterations in the strength and thermophysical parameters of ceramics under high-temperature irradiation with heavy ions comparable in energy to fission fragments of nuclear fuel, which allows, during high-temperature irradiation, to simulate radiation damage that is as similar as possible to the fission processes of nuclear fuel. During the studies, it was found that the addition of a stabilizing additive Y2O3 to the composition of CeO2 ceramics in the case of high-temperature irradiation causes an increase in stability to swelling and softening because of a decrease in the thermal expansion of the crystal lattice by 3–8 times in comparison with unstabilized CeO2 ceramics. It has been determined that the addition of a stabilizing additive Y2O3 leads not only to a rise in the resistance of the crystal structure to deformation distortions and swelling, but also to a decrease in the effect of thermal expansion of the crystal structure, which has an adverse effect on the structural ordering of CeO2 ceramics exposed to irradiation at high temperatures.\",\"PeriodicalId\":505131,\"journal\":{\"name\":\"Crystals\",\"volume\":\"38 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/cryst14040320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/cryst14040320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Study of the Influence of Doping Efficiency of CeO2 Ceramics with a Stabilizing Additive Y2O3 on Changes in the Strength and Thermophysical Parameters of Ceramics under High-Temperature Irradiation with Heavy Ions
The article outlines findings from a comparative analysis of the effectiveness of doping CeO2 ceramics with a stabilizing additive Y2O3 on alterations in the strength and thermophysical parameters of ceramics under high-temperature irradiation with heavy ions comparable in energy to fission fragments of nuclear fuel, which allows, during high-temperature irradiation, to simulate radiation damage that is as similar as possible to the fission processes of nuclear fuel. During the studies, it was found that the addition of a stabilizing additive Y2O3 to the composition of CeO2 ceramics in the case of high-temperature irradiation causes an increase in stability to swelling and softening because of a decrease in the thermal expansion of the crystal lattice by 3–8 times in comparison with unstabilized CeO2 ceramics. It has been determined that the addition of a stabilizing additive Y2O3 leads not only to a rise in the resistance of the crystal structure to deformation distortions and swelling, but also to a decrease in the effect of thermal expansion of the crystal structure, which has an adverse effect on the structural ordering of CeO2 ceramics exposed to irradiation at high temperatures.