{"title":"论根据不准确指定的频谱对一类函数的算子族进行最佳恢复","authors":"Е.В. Абрамова, Е.О. Сивкова","doi":"10.46698/z4058-1920-7739-f","DOIUrl":null,"url":null,"abstract":"В работе рассматривается однопараметрическое семейство линейных непрерывных операторов в $L_2(\\mathbb R^d)$ и ставится задача об оптимальном восстановлении оператора при данном значении параметра на классе функций, преобразования Фурье которых интегрируемы в квадрате со степенным весом (пространства такой структуры играют важную роль в вопросах вложения функциональных пространств и теории дифференциальных уравнений) по следующей информации: о каждой функции из этого класса известно (вообще говоря, приближенно) ее преобразование Фурье на некотором измеримом подмножестве $\\mathbb R^d$. Построено семейство оптимальных методов восстановления операторов при каждом значении параметра. Оптимальные методы не используют всю доступную информацию о преобразовании Фурье функций из класса, а используют только информацию о преобразовании Фурье функции в шаре с центром в нуле максимального радиуса, обладающего тем свойством, что его мера равна мере его пересечения с множеством, где известно (точно или приближенно) преобразование Фурье. В качестве следствий доказанного результата получено семейство оптимальных методов восстановления решения уравнения теплопроводности в $\\mathbb R^d$ в данный момент времени при условии, что о начальной функции, принадлежащей указанному классу, известно точно или приближенно ее преобразование Фурье на некотором измеримом множестве, а также семейство оптимальных методов восстановления решения задачи Дирихле для полупространства на гиперплоскости по преобразованию Фурье граничной функции, принадлежащей указанному классу, которое известно точно или приближенно на некотором измеримом множестве в $\\mathbb R^d$.","PeriodicalId":509237,"journal":{"name":"Владикавказский математический журнал","volume":"38 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Best Recovery of a Family of Operators on a Class of Functions According to Their Inaccurately Specified Spectrum\",\"authors\":\"Е.В. Абрамова, Е.О. Сивкова\",\"doi\":\"10.46698/z4058-1920-7739-f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"В работе рассматривается однопараметрическое семейство линейных непрерывных операторов в $L_2(\\\\mathbb R^d)$ и ставится задача об оптимальном восстановлении оператора при данном значении параметра на классе функций, преобразования Фурье которых интегрируемы в квадрате со степенным весом (пространства такой структуры играют важную роль в вопросах вложения функциональных пространств и теории дифференциальных уравнений) по следующей информации: о каждой функции из этого класса известно (вообще говоря, приближенно) ее преобразование Фурье на некотором измеримом подмножестве $\\\\mathbb R^d$. Построено семейство оптимальных методов восстановления операторов при каждом значении параметра. Оптимальные методы не используют всю доступную информацию о преобразовании Фурье функций из класса, а используют только информацию о преобразовании Фурье функции в шаре с центром в нуле максимального радиуса, обладающего тем свойством, что его мера равна мере его пересечения с множеством, где известно (точно или приближенно) преобразование Фурье. В качестве следствий доказанного результата получено семейство оптимальных методов восстановления решения уравнения теплопроводности в $\\\\mathbb R^d$ в данный момент времени при условии, что о начальной функции, принадлежащей указанному классу, известно точно или приближенно ее преобразование Фурье на некотором измеримом множестве, а также семейство оптимальных методов восстановления решения задачи Дирихле для полупространства на гиперплоскости по преобразованию Фурье граничной функции, принадлежащей указанному классу, которое известно точно или приближенно на некотором измеримом множестве в $\\\\mathbb R^d$.\",\"PeriodicalId\":509237,\"journal\":{\"name\":\"Владикавказский математический журнал\",\"volume\":\"38 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Владикавказский математический журнал\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46698/z4058-1920-7739-f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Владикавказский математический журнал","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46698/z4058-1920-7739-f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Best Recovery of a Family of Operators on a Class of Functions According to Their Inaccurately Specified Spectrum
В работе рассматривается однопараметрическое семейство линейных непрерывных операторов в $L_2(\mathbb R^d)$ и ставится задача об оптимальном восстановлении оператора при данном значении параметра на классе функций, преобразования Фурье которых интегрируемы в квадрате со степенным весом (пространства такой структуры играют важную роль в вопросах вложения функциональных пространств и теории дифференциальных уравнений) по следующей информации: о каждой функции из этого класса известно (вообще говоря, приближенно) ее преобразование Фурье на некотором измеримом подмножестве $\mathbb R^d$. Построено семейство оптимальных методов восстановления операторов при каждом значении параметра. Оптимальные методы не используют всю доступную информацию о преобразовании Фурье функций из класса, а используют только информацию о преобразовании Фурье функции в шаре с центром в нуле максимального радиуса, обладающего тем свойством, что его мера равна мере его пересечения с множеством, где известно (точно или приближенно) преобразование Фурье. В качестве следствий доказанного результата получено семейство оптимальных методов восстановления решения уравнения теплопроводности в $\mathbb R^d$ в данный момент времени при условии, что о начальной функции, принадлежащей указанному классу, известно точно или приближенно ее преобразование Фурье на некотором измеримом множестве, а также семейство оптимальных методов восстановления решения задачи Дирихле для полупространства на гиперплоскости по преобразованию Фурье граничной функции, принадлежащей указанному классу, которое известно точно или приближенно на некотором измеримом множестве в $\mathbb R^d$.