超高性能混凝土加固钢筋混凝土梁抗弯能力设计方法研究

IF 1.1 Q3 ENGINEERING, CIVIL
Jiawei Wang, Feifei Ying
{"title":"超高性能混凝土加固钢筋混凝土梁抗弯能力设计方法研究","authors":"Jiawei Wang, Feifei Ying","doi":"10.24425/ace.2024.148924","DOIUrl":null,"url":null,"abstract":"Due to the increase in traffic volume, load level, and service life of existing bridges, the bending bearing capacity of reinforced concrete beams (hereinafter referred to as RC beams) has decreased, leading to safety issues. In order to solve the problem of insufficient flexural bearing capacity of RC beams, this article adopts the method of ultra-high performance concrete (UHPC) flexural strengthening RC beams, establishes a finite element model of UHPC-RC reinforcement system, and conducts stress analysis with reinforcement thickness, reinforcement range, reinforcement form, and reinforcement height as parameters to determine the optimal scheme of the reinforcement system. Based on the calculation results, a theoretical formula for the maximum principal stress and maximum deflection of the reinforcement system is proposed. To verify the feasibility of the plan, a reinforcement design was carried out on an existing beam, and it was found that the bending bearing capacity of the RC beam increased by 21%; the high tensile strength of UHPC and the addition of steel fibers have a good limiting effect on cracks; The steel plate of the reinforcement system can be used as a template, reducing construction costs and having good economy.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the design method of flexural capacity of RC beams strengthen by ultra-high-performance concrete\",\"authors\":\"Jiawei Wang, Feifei Ying\",\"doi\":\"10.24425/ace.2024.148924\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increase in traffic volume, load level, and service life of existing bridges, the bending bearing capacity of reinforced concrete beams (hereinafter referred to as RC beams) has decreased, leading to safety issues. In order to solve the problem of insufficient flexural bearing capacity of RC beams, this article adopts the method of ultra-high performance concrete (UHPC) flexural strengthening RC beams, establishes a finite element model of UHPC-RC reinforcement system, and conducts stress analysis with reinforcement thickness, reinforcement range, reinforcement form, and reinforcement height as parameters to determine the optimal scheme of the reinforcement system. Based on the calculation results, a theoretical formula for the maximum principal stress and maximum deflection of the reinforcement system is proposed. To verify the feasibility of the plan, a reinforcement design was carried out on an existing beam, and it was found that the bending bearing capacity of the RC beam increased by 21%; the high tensile strength of UHPC and the addition of steel fibers have a good limiting effect on cracks; The steel plate of the reinforcement system can be used as a template, reducing construction costs and having good economy.\",\"PeriodicalId\":45753,\"journal\":{\"name\":\"Archives of Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24425/ace.2024.148924\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2024.148924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

由于交通量、荷载水平和既有桥梁使用年限的增加,钢筋混凝土梁(以下简称 RC 梁)的抗弯承载力下降,导致安全问题。为解决钢筋混凝土梁抗弯承载力不足的问题,本文采用超高性能混凝土(UHPC)抗弯加固钢筋混凝土梁的方法,建立了 UHPC-RC 加固体系的有限元模型,并以加固厚度、加固范围、加固形式、加固高度为参数进行应力分析,确定了加固体系的最优方案。根据计算结果,提出了加固系统最大主应力和最大挠度的理论计算公式。为验证该方案的可行性,在现有梁上进行了加固设计,发现 RC 梁的抗弯承载力提高了 21%;UHPC 的抗拉强度高,添加钢纤维对裂缝有良好的限制作用;加固体系的钢板可作为模板使用,降低了施工成本,具有良好的经济性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on the design method of flexural capacity of RC beams strengthen by ultra-high-performance concrete
Due to the increase in traffic volume, load level, and service life of existing bridges, the bending bearing capacity of reinforced concrete beams (hereinafter referred to as RC beams) has decreased, leading to safety issues. In order to solve the problem of insufficient flexural bearing capacity of RC beams, this article adopts the method of ultra-high performance concrete (UHPC) flexural strengthening RC beams, establishes a finite element model of UHPC-RC reinforcement system, and conducts stress analysis with reinforcement thickness, reinforcement range, reinforcement form, and reinforcement height as parameters to determine the optimal scheme of the reinforcement system. Based on the calculation results, a theoretical formula for the maximum principal stress and maximum deflection of the reinforcement system is proposed. To verify the feasibility of the plan, a reinforcement design was carried out on an existing beam, and it was found that the bending bearing capacity of the RC beam increased by 21%; the high tensile strength of UHPC and the addition of steel fibers have a good limiting effect on cracks; The steel plate of the reinforcement system can be used as a template, reducing construction costs and having good economy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archives of Civil Engineering
Archives of Civil Engineering ENGINEERING, CIVIL-
CiteScore
1.50
自引率
28.60%
发文量
0
审稿时长
24 weeks
期刊介绍: ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信