具有无限延迟的 Hilfer 分数中性随机微分系统的存在性

IF 0.7 Q2 MATHEMATICS
S. Sivasankar, R. Udhayakumar, V. Muthukumaran, G. Gokul, S. Al-Omari
{"title":"具有无限延迟的 Hilfer 分数中性随机微分系统的存在性","authors":"S. Sivasankar, R. Udhayakumar, V. Muthukumaran, G. Gokul, S. Al-Omari","doi":"10.31489/2024m1/174-193","DOIUrl":null,"url":null,"abstract":"The goal of this study is to propose the existence of mild solutions to delay fractional neutral stochastic differential systems with almost sectorial operators involving the Hilfer fractional (HF) derivative in Hilbert space, which generalized the famous Riemann-Liouville fractional derivative. The main techniques rely on the basic principles and concepts from fractional calculus, semigroup theory, almost sectorial operators, stochastic analysis, and the Mönch fixed point theorem via the measure of noncompactness (MNC). Particularly, the existence result of the equation is obtained under some weakly compactness conditions. An example is given at the end of this article to show the applications of the obtained abstract results.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Hilfer fractional neutral stochastic differential systems with infinite delay\",\"authors\":\"S. Sivasankar, R. Udhayakumar, V. Muthukumaran, G. Gokul, S. Al-Omari\",\"doi\":\"10.31489/2024m1/174-193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study is to propose the existence of mild solutions to delay fractional neutral stochastic differential systems with almost sectorial operators involving the Hilfer fractional (HF) derivative in Hilbert space, which generalized the famous Riemann-Liouville fractional derivative. The main techniques rely on the basic principles and concepts from fractional calculus, semigroup theory, almost sectorial operators, stochastic analysis, and the Mönch fixed point theorem via the measure of noncompactness (MNC). Particularly, the existence result of the equation is obtained under some weakly compactness conditions. An example is given at the end of this article to show the applications of the obtained abstract results.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2024m1/174-193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024m1/174-193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目标是提出具有几乎扇形算子的延迟分数中性随机微分系统的温和解的存在性,这些算子涉及希尔伯特空间中的希尔费分数(HF)导数,它概括了著名的黎曼-刘维尔分数导数。主要技术依赖于分数微积分、半群理论、近似扇形算子、随机分析以及通过非紧密性度量(MNC)的门奇定点定理等方面的基本原理和概念。特别是,方程的存在性结果是在一些弱紧凑性条件下得到的。文章最后举例说明了所获抽象结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Hilfer fractional neutral stochastic differential systems with infinite delay
The goal of this study is to propose the existence of mild solutions to delay fractional neutral stochastic differential systems with almost sectorial operators involving the Hilfer fractional (HF) derivative in Hilbert space, which generalized the famous Riemann-Liouville fractional derivative. The main techniques rely on the basic principles and concepts from fractional calculus, semigroup theory, almost sectorial operators, stochastic analysis, and the Mönch fixed point theorem via the measure of noncompactness (MNC). Particularly, the existence result of the equation is obtained under some weakly compactness conditions. An example is given at the end of this article to show the applications of the obtained abstract results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信