在重复测量分类中使用生长曲线模型

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Dietrich von Rosen, Martin Singull
{"title":"在重复测量分类中使用生长曲线模型","authors":"Dietrich von Rosen,&nbsp;Martin Singull","doi":"10.1007/s10463-024-00900-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, discrimination between two populations following the growth curve model is considered. A likelihood-based classification procedure is established, in the sense that we compare the two likelihoods given that the new observation belongs to respective population. The possibility to classify the new observation as belonging to an unknown population is discussed, which is shown to be natural when considering growth curves. Several examples and simulations are given to emphasize this possibility.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using the growth curve model in classification of repeated measurements\",\"authors\":\"Dietrich von Rosen,&nbsp;Martin Singull\",\"doi\":\"10.1007/s10463-024-00900-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, discrimination between two populations following the growth curve model is considered. A likelihood-based classification procedure is established, in the sense that we compare the two likelihoods given that the new observation belongs to respective population. The possibility to classify the new observation as belonging to an unknown population is discussed, which is shown to be natural when considering growth curves. Several examples and simulations are given to emphasize this possibility.</p></div>\",\"PeriodicalId\":55511,\"journal\":{\"name\":\"Annals of the Institute of Statistical Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the Institute of Statistical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10463-024-00900-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-024-00900-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了按照增长曲线模型区分两个种群的问题。本文建立了一个基于似然法的分类程序,即在新观测数据属于各自种群的情况下,比较两个似然法。我们还讨论了将新观测数据归类为未知种群的可能性,这在考虑增长曲线时是很自然的。我们给出了几个例子和模拟来强调这种可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Using the growth curve model in classification of repeated measurements

Using the growth curve model in classification of repeated measurements

In this paper, discrimination between two populations following the growth curve model is considered. A likelihood-based classification procedure is established, in the sense that we compare the two likelihoods given that the new observation belongs to respective population. The possibility to classify the new observation as belonging to an unknown population is discussed, which is shown to be natural when considering growth curves. Several examples and simulations are given to emphasize this possibility.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信