Bogoyavlensky 修正的 KdV 层次结构和环状李代数 $$\textrm{sl}^\textrm{tor}_{2}$$

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yi Yang, Jipeng Cheng
{"title":"Bogoyavlensky 修正的 KdV 层次结构和环状李代数 $$\\textrm{sl}^\\textrm{tor}_{2}$$","authors":"Yi Yang,&nbsp;Jipeng Cheng","doi":"10.1007/s11005-024-01798-9","DOIUrl":null,"url":null,"abstract":"<div><p>By principal representation of toroidal Lie algebra <span>\\(\\mathrm{sl^{tor}_2}\\)</span>, we construct an integrable system: Bogoyavlensky–modified KdV (B–mKdV) hierarchy, which is <span>\\((2+1)\\)</span>-dimensional generalization of modified KdV hierarchy. Firstly, bilinear equations of B–mKdV hierarchy are obtained by fermionic representation of <span>\\(\\mathrm{sl^{tor}_2}\\)</span> and boson–fermion correspondence, which are rewritten into Hirota bilinear forms. Also Fay-like identities of B–mKdV hierarchy are derived. Then from B–mKdV bilinear equations, we investigate Lax structure, which is another equivalent formulation of B–mKdV hierarchy. Conversely, we also derive B–mKdV bilinear equations from Lax structure. Other equivalent formulations of wave functions and dressing operator are needed when discussing bilinear equations and Lax structure. After that, Miura links between Bogoyavlensky–KdV hierarchy and B–mKdV hierarchy are discussed. Finally, we construct soliton solutions of B–mKdV hierarchy.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bogoyavlensky–modified KdV hierarchy and toroidal Lie algebra \\\\(\\\\textrm{sl}^\\\\textrm{tor}_{2}\\\\)\",\"authors\":\"Yi Yang,&nbsp;Jipeng Cheng\",\"doi\":\"10.1007/s11005-024-01798-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>By principal representation of toroidal Lie algebra <span>\\\\(\\\\mathrm{sl^{tor}_2}\\\\)</span>, we construct an integrable system: Bogoyavlensky–modified KdV (B–mKdV) hierarchy, which is <span>\\\\((2+1)\\\\)</span>-dimensional generalization of modified KdV hierarchy. Firstly, bilinear equations of B–mKdV hierarchy are obtained by fermionic representation of <span>\\\\(\\\\mathrm{sl^{tor}_2}\\\\)</span> and boson–fermion correspondence, which are rewritten into Hirota bilinear forms. Also Fay-like identities of B–mKdV hierarchy are derived. Then from B–mKdV bilinear equations, we investigate Lax structure, which is another equivalent formulation of B–mKdV hierarchy. Conversely, we also derive B–mKdV bilinear equations from Lax structure. Other equivalent formulations of wave functions and dressing operator are needed when discussing bilinear equations and Lax structure. After that, Miura links between Bogoyavlensky–KdV hierarchy and B–mKdV hierarchy are discussed. Finally, we construct soliton solutions of B–mKdV hierarchy.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 2\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01798-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01798-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

通过环形李代数的主表示(\mathrm{sl^{tor}_2}\),我们构造了一个可积分系统:Bogoyavlensky-modified KdV (B-mKdV) hierarchy,它是((2+1)\)维广义的修正 KdV hierarchy。首先,通过(\mathrm{sl^{tor}_2}\)的费米子表示和玻色子-费米子对应关系得到了 B-mKdV 层次的双线性方程,并将其重写为 Hirota 双线性形式。同时还推导出了 B-mKdV 层次的 Fay-like 特性。然后,从 B-mKdV 双线性方程出发,我们研究了拉克斯结构,它是 B-mKdV 层次结构的另一种等价形式。反过来,我们也从 Lax 结构推导出 B-mKdV 双线性方程。在讨论双线性方程和 Lax 结构时,还需要波函数和敷料算子的其他等价形式。之后,我们讨论了 Bogoyavlensky-KdV 层次和 B-mKdV 层次之间的 Miura 联系。最后,我们构建了 B-mKdV 层次的孤子解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bogoyavlensky–modified KdV hierarchy and toroidal Lie algebra \(\textrm{sl}^\textrm{tor}_{2}\)

By principal representation of toroidal Lie algebra \(\mathrm{sl^{tor}_2}\), we construct an integrable system: Bogoyavlensky–modified KdV (B–mKdV) hierarchy, which is \((2+1)\)-dimensional generalization of modified KdV hierarchy. Firstly, bilinear equations of B–mKdV hierarchy are obtained by fermionic representation of \(\mathrm{sl^{tor}_2}\) and boson–fermion correspondence, which are rewritten into Hirota bilinear forms. Also Fay-like identities of B–mKdV hierarchy are derived. Then from B–mKdV bilinear equations, we investigate Lax structure, which is another equivalent formulation of B–mKdV hierarchy. Conversely, we also derive B–mKdV bilinear equations from Lax structure. Other equivalent formulations of wave functions and dressing operator are needed when discussing bilinear equations and Lax structure. After that, Miura links between Bogoyavlensky–KdV hierarchy and B–mKdV hierarchy are discussed. Finally, we construct soliton solutions of B–mKdV hierarchy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信