基于 NN 技术寻找巴格达市民与服务中心之间的最佳连接路线

Q4 Earth and Planetary Sciences
Nibras A.Mohammed Ali, Faisel G. Mohammed, S. G. Mohammed
{"title":"基于 NN 技术寻找巴格达市民与服务中心之间的最佳连接路线","authors":"Nibras A.Mohammed Ali, Faisel G. Mohammed, S. G. Mohammed","doi":"10.24996/ijs.2024.65.3.39","DOIUrl":null,"url":null,"abstract":"     A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network site. A network service area is a region that comprises all accessible roadways (that is, routes that are within defined impedance) (that is, streets that are within specified impedance). In contrast to the Google Maps application, the 5-minute service area for a site on a network comprises all streets that can be accessed within five minutes.","PeriodicalId":14698,"journal":{"name":"Iraqi Journal of Science","volume":"34 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding the Best Route for Connecting Citizens with Service Centers in Baghdad Based on NN Technology\",\"authors\":\"Nibras A.Mohammed Ali, Faisel G. Mohammed, S. G. Mohammed\",\"doi\":\"10.24996/ijs.2024.65.3.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"     A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network site. A network service area is a region that comprises all accessible roadways (that is, routes that are within defined impedance) (that is, streets that are within specified impedance). In contrast to the Google Maps application, the 5-minute service area for a site on a network comprises all streets that can be accessed within five minutes.\",\"PeriodicalId\":14698,\"journal\":{\"name\":\"Iraqi Journal of Science\",\"volume\":\"34 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24996/ijs.2024.65.3.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24996/ijs.2024.65.3.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

地理信息系统(GIS)是一种非常有效的管理和分析工具。地理位置依赖于数据。事实证明,使用人工神经网络(ANN)解释自然资源数据是有益的。反向传播神经网络是最广泛、最流行的设计之一。将地理信息系统与人工神经网络相结合,可以缩短评估数据所需的时间,从而降低景观变化研究的成本。人工神经网络的设计和种类繁多,其中大多数是基于 PC 的服务域。使用 ArcGIS Network Analyst 附加组件,您可以定位任何网络站点周围的服务区域。网络服务区域是由所有可访问的道路(即阻抗在规定范围内的路线)(即阻抗在规定范围内的街道)组成的区域。与谷歌地图应用程序不同的是,网络站点的 5 分钟服务区包括可在 5 分钟内到达的所有街道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding the Best Route for Connecting Citizens with Service Centers in Baghdad Based on NN Technology
     A geographic information system (GIS) is a very effective management and analysis tool. Geographic locations rely on data. The use of artificial neural networks (ANNs) for the interpretation of natural resource data has been shown to be beneficial. Back-propagation neural networks are one of the most widespread and prevalent designs. The combination of geographic information systems with artificial neural networks provides a method for decreasing the cost of landscape change studies by shortening the time required to evaluate data. Numerous designs and kinds of ANNs have been created; the majority of them are PC-based service domains. Using the ArcGIS Network Analyst add-on, you can locate service regions around any network site. A network service area is a region that comprises all accessible roadways (that is, routes that are within defined impedance) (that is, streets that are within specified impedance). In contrast to the Google Maps application, the 5-minute service area for a site on a network comprises all streets that can be accessed within five minutes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iraqi Journal of Science
Iraqi Journal of Science Chemistry-Chemistry (all)
CiteScore
1.50
自引率
0.00%
发文量
241
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信