{"title":"利用级联约束解码器进行提示引导查询,以检测人与物体之间的交互作用","authors":"Sheng Liu, Bingnan Guo, Feng Zhang, Junhao Chen, Ruixiang Chen","doi":"10.1049/cvi2.12276","DOIUrl":null,"url":null,"abstract":"<p>Human–object interaction (HOI) detection, which localises and recognises interactions between human and object, requires high-level image and scene understanding. Recent methods for HOI detection typically utilise transformer-based architecture to build unified future representation. However, these methods use random initial queries to predict interactive human–object pairs, leading to a lack of prior knowledge. Furthermore, most methods provide unified features to forecast interactions using conventional decoder structures, but they lack the ability to build efficient multi-task representations. To address these problems, we propose a novel two-stage HOI detector called PGCD, mainly consisting of prompt guidance query and cascaded constraint decoders. Firstly, the authors propose a novel prompt guidance query generation module (PGQ) to introduce the guidance-semantic features. In PGQ, the authors build visual-semantic transfer to obtain fuller semantic representations. In addition, a cascaded constraint decoder architecture (CD) with random masks is designed to build fine-grained interaction features and improve the model's generalisation performance. Experimental results demonstrate that the authors’ proposed approach obtains significant performance on the two widely used benchmarks, that is, HICO-DET and V-COCO.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 6","pages":"772-787"},"PeriodicalIF":1.5000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12276","citationCount":"0","resultStr":"{\"title\":\"Prompt guidance query with cascaded constraint decoders for human–object interaction detection\",\"authors\":\"Sheng Liu, Bingnan Guo, Feng Zhang, Junhao Chen, Ruixiang Chen\",\"doi\":\"10.1049/cvi2.12276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Human–object interaction (HOI) detection, which localises and recognises interactions between human and object, requires high-level image and scene understanding. Recent methods for HOI detection typically utilise transformer-based architecture to build unified future representation. However, these methods use random initial queries to predict interactive human–object pairs, leading to a lack of prior knowledge. Furthermore, most methods provide unified features to forecast interactions using conventional decoder structures, but they lack the ability to build efficient multi-task representations. To address these problems, we propose a novel two-stage HOI detector called PGCD, mainly consisting of prompt guidance query and cascaded constraint decoders. Firstly, the authors propose a novel prompt guidance query generation module (PGQ) to introduce the guidance-semantic features. In PGQ, the authors build visual-semantic transfer to obtain fuller semantic representations. In addition, a cascaded constraint decoder architecture (CD) with random masks is designed to build fine-grained interaction features and improve the model's generalisation performance. Experimental results demonstrate that the authors’ proposed approach obtains significant performance on the two widely used benchmarks, that is, HICO-DET and V-COCO.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 6\",\"pages\":\"772-787\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12276\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12276","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Prompt guidance query with cascaded constraint decoders for human–object interaction detection
Human–object interaction (HOI) detection, which localises and recognises interactions between human and object, requires high-level image and scene understanding. Recent methods for HOI detection typically utilise transformer-based architecture to build unified future representation. However, these methods use random initial queries to predict interactive human–object pairs, leading to a lack of prior knowledge. Furthermore, most methods provide unified features to forecast interactions using conventional decoder structures, but they lack the ability to build efficient multi-task representations. To address these problems, we propose a novel two-stage HOI detector called PGCD, mainly consisting of prompt guidance query and cascaded constraint decoders. Firstly, the authors propose a novel prompt guidance query generation module (PGQ) to introduce the guidance-semantic features. In PGQ, the authors build visual-semantic transfer to obtain fuller semantic representations. In addition, a cascaded constraint decoder architecture (CD) with random masks is designed to build fine-grained interaction features and improve the model's generalisation performance. Experimental results demonstrate that the authors’ proposed approach obtains significant performance on the two widely used benchmarks, that is, HICO-DET and V-COCO.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf