钢板梁抗剪强度预测。分析模型的性能比较

IF 0.7 Q4 CONSTRUCTION & BUILDING TECHNOLOGY
M. M. Rafi, M. A. Bhutto
{"title":"钢板梁抗剪强度预测。分析模型的性能比较","authors":"M. M. Rafi, M. A. Bhutto","doi":"10.3233/brs-240221","DOIUrl":null,"url":null,"abstract":" Web shear buckling of steel plate girders limits their load-carrying capacity in bending. Several analytical models have been suggested in the literature to estimate the shear capacity of plate girders. This paper presents a critical evaluation of several of these analytical models using the data of experimentally tested plate girders available in the literature. It was found that these analytical models make a conservative estimation of critical buckling strength for plate girders with larger slenderness and/or aspect ratios. Although the predicted ultimate shear strength varied across the different analytical models, no particular trend was identified to show that the aspect and/or slenderness ratios influenced the shear strength. A parametrically conducted analysis indicated that the threshold slenderness ratio (to cause buckling in the web panel) decreases with increasing yield strength and aspect ratio. The paper proposes simplified guidelines for the preliminary sizing of steel plate girders by avoiding shear buckling. It has been shown that the sizes of plate girders determined using the proposed guidelines satisfy design requirements for both flexure and shear.","PeriodicalId":43279,"journal":{"name":"Bridge Structures","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Steel plate girders shear strength prediction. A performance comparison of analytical models\",\"authors\":\"M. M. Rafi, M. A. Bhutto\",\"doi\":\"10.3233/brs-240221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Web shear buckling of steel plate girders limits their load-carrying capacity in bending. Several analytical models have been suggested in the literature to estimate the shear capacity of plate girders. This paper presents a critical evaluation of several of these analytical models using the data of experimentally tested plate girders available in the literature. It was found that these analytical models make a conservative estimation of critical buckling strength for plate girders with larger slenderness and/or aspect ratios. Although the predicted ultimate shear strength varied across the different analytical models, no particular trend was identified to show that the aspect and/or slenderness ratios influenced the shear strength. A parametrically conducted analysis indicated that the threshold slenderness ratio (to cause buckling in the web panel) decreases with increasing yield strength and aspect ratio. The paper proposes simplified guidelines for the preliminary sizing of steel plate girders by avoiding shear buckling. It has been shown that the sizes of plate girders determined using the proposed guidelines satisfy design requirements for both flexure and shear.\",\"PeriodicalId\":43279,\"journal\":{\"name\":\"Bridge Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bridge Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/brs-240221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bridge Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/brs-240221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钢板梁的腹板剪切屈曲限制了其弯曲承载能力。文献中提出了几种分析模型来估算钢板梁的抗剪能力。本文利用文献中经过实验测试的钢板梁数据,对其中几个分析模型进行了批判性评估。结果发现,这些分析模型对具有较大细长率和/或纵横比的板梁的临界屈曲强度做出了保守的估计。虽然不同分析模型预测的极限剪切强度各不相同,但没有发现特定趋势表明长宽比和/或细长比会影响剪切强度。一项参数分析表明,随着屈服强度和长宽比的增加,阈值细长比(导致腹板屈曲)会降低。本文提出了通过避免剪切屈曲来初步确定钢板梁尺寸的简化指南。结果表明,使用拟议准则确定的钢板梁尺寸能够满足抗弯和抗剪的设计要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steel plate girders shear strength prediction. A performance comparison of analytical models
 Web shear buckling of steel plate girders limits their load-carrying capacity in bending. Several analytical models have been suggested in the literature to estimate the shear capacity of plate girders. This paper presents a critical evaluation of several of these analytical models using the data of experimentally tested plate girders available in the literature. It was found that these analytical models make a conservative estimation of critical buckling strength for plate girders with larger slenderness and/or aspect ratios. Although the predicted ultimate shear strength varied across the different analytical models, no particular trend was identified to show that the aspect and/or slenderness ratios influenced the shear strength. A parametrically conducted analysis indicated that the threshold slenderness ratio (to cause buckling in the web panel) decreases with increasing yield strength and aspect ratio. The paper proposes simplified guidelines for the preliminary sizing of steel plate girders by avoiding shear buckling. It has been shown that the sizes of plate girders determined using the proposed guidelines satisfy design requirements for both flexure and shear.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bridge Structures
Bridge Structures CONSTRUCTION & BUILDING TECHNOLOGY-
CiteScore
1.10
自引率
0.00%
发文量
5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信