{"title":"DC04 钢板的再结晶纹理和弹性性能的各向异性","authors":"V.A. Volchok, Z.A. Briukhanov, S.I. Iovchev, A.O. Briukhanov, D.O. Yefimenko","doi":"10.15407/mom2024.01.018","DOIUrl":null,"url":null,"abstract":"We studied steel sheets DC04 (0.06% C, up to 0.35% Mn, up to 0.40% Si, ~ 0.025% S and P) with a thickness of 0.95 mm as delivered. Sheets of A4 size were annealed in a laboratory oven (6000C in an argon atmosphere, hold for 1 hour). The structure of DC04 steel sheets after recrystallization annealing was studied. The microstructure of the steel sheets under study is presented from the side of the rolling plane and in the section of the sheet perpendicular to the direction. In the plane of the sheets, the grains are elongated; in the cross section, the grains are approximately equiaxed. Pole figures (PF) were constructed based on the results of electron backscatter diffraction (EBSD) on a LEO 1455 VP electron microscope at an accelerating voltage of 20 kV from the plane of the sheets and from the section of the sheet perpendicular to the rolling direction. To improve statistics, PF were constructed by averaging reflex stereographic projections from 20 different representative volumes of material relative to the rolling direction and transverse direction. The texture and anisotropy of Young's modulus in the plane and cross section of steel sheets DC04 after recrystallization annealing was studied using EBSD method. A connection has been obtained between ideal orientations that describe the texture in two mutually perpendicular planes and the corresponding integral characteristics of texture (ICT). Rectangular samples with a length of 100 and a width of 10 mm at different angles to the rolling direction every 150 to measure Young's modulus. Samples were processed in a bag to ensure uniform dimensions. Young's modulus was determined by the dynamic method from the frequency of natural transverse vibrations. Three batches of samples were used to construct Young's modulus anisotropy curves. The anisotropy of the Young's modulus in the plane of steel sheets, calculated from the ICT based on the results of EBSD data, is in good agreement with the results of direct measurements. The value of Young's modulus in the direction normal to the plane of the sheet and in the section plane in the direction normal to the plane of the sheet, calculated from the ICT and the values of the compliance constants of iron, coincide. Keywords: texture, pole figure, anisotropy, integral characteristics of texture, Young's modulus.","PeriodicalId":508191,"journal":{"name":"Metaloznavstvo ta obrobka metalìv","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recrystallization texture and anisotropy of elastic properties of DC04 steel sheets\",\"authors\":\"V.A. Volchok, Z.A. Briukhanov, S.I. Iovchev, A.O. Briukhanov, D.O. Yefimenko\",\"doi\":\"10.15407/mom2024.01.018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We studied steel sheets DC04 (0.06% C, up to 0.35% Mn, up to 0.40% Si, ~ 0.025% S and P) with a thickness of 0.95 mm as delivered. Sheets of A4 size were annealed in a laboratory oven (6000C in an argon atmosphere, hold for 1 hour). The structure of DC04 steel sheets after recrystallization annealing was studied. The microstructure of the steel sheets under study is presented from the side of the rolling plane and in the section of the sheet perpendicular to the direction. In the plane of the sheets, the grains are elongated; in the cross section, the grains are approximately equiaxed. Pole figures (PF) were constructed based on the results of electron backscatter diffraction (EBSD) on a LEO 1455 VP electron microscope at an accelerating voltage of 20 kV from the plane of the sheets and from the section of the sheet perpendicular to the rolling direction. To improve statistics, PF were constructed by averaging reflex stereographic projections from 20 different representative volumes of material relative to the rolling direction and transverse direction. The texture and anisotropy of Young's modulus in the plane and cross section of steel sheets DC04 after recrystallization annealing was studied using EBSD method. A connection has been obtained between ideal orientations that describe the texture in two mutually perpendicular planes and the corresponding integral characteristics of texture (ICT). Rectangular samples with a length of 100 and a width of 10 mm at different angles to the rolling direction every 150 to measure Young's modulus. Samples were processed in a bag to ensure uniform dimensions. Young's modulus was determined by the dynamic method from the frequency of natural transverse vibrations. Three batches of samples were used to construct Young's modulus anisotropy curves. The anisotropy of the Young's modulus in the plane of steel sheets, calculated from the ICT based on the results of EBSD data, is in good agreement with the results of direct measurements. The value of Young's modulus in the direction normal to the plane of the sheet and in the section plane in the direction normal to the plane of the sheet, calculated from the ICT and the values of the compliance constants of iron, coincide. Keywords: texture, pole figure, anisotropy, integral characteristics of texture, Young's modulus.\",\"PeriodicalId\":508191,\"journal\":{\"name\":\"Metaloznavstvo ta obrobka metalìv\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metaloznavstvo ta obrobka metalìv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/mom2024.01.018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metaloznavstvo ta obrobka metalìv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/mom2024.01.018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recrystallization texture and anisotropy of elastic properties of DC04 steel sheets
We studied steel sheets DC04 (0.06% C, up to 0.35% Mn, up to 0.40% Si, ~ 0.025% S and P) with a thickness of 0.95 mm as delivered. Sheets of A4 size were annealed in a laboratory oven (6000C in an argon atmosphere, hold for 1 hour). The structure of DC04 steel sheets after recrystallization annealing was studied. The microstructure of the steel sheets under study is presented from the side of the rolling plane and in the section of the sheet perpendicular to the direction. In the plane of the sheets, the grains are elongated; in the cross section, the grains are approximately equiaxed. Pole figures (PF) were constructed based on the results of electron backscatter diffraction (EBSD) on a LEO 1455 VP electron microscope at an accelerating voltage of 20 kV from the plane of the sheets and from the section of the sheet perpendicular to the rolling direction. To improve statistics, PF were constructed by averaging reflex stereographic projections from 20 different representative volumes of material relative to the rolling direction and transverse direction. The texture and anisotropy of Young's modulus in the plane and cross section of steel sheets DC04 after recrystallization annealing was studied using EBSD method. A connection has been obtained between ideal orientations that describe the texture in two mutually perpendicular planes and the corresponding integral characteristics of texture (ICT). Rectangular samples with a length of 100 and a width of 10 mm at different angles to the rolling direction every 150 to measure Young's modulus. Samples were processed in a bag to ensure uniform dimensions. Young's modulus was determined by the dynamic method from the frequency of natural transverse vibrations. Three batches of samples were used to construct Young's modulus anisotropy curves. The anisotropy of the Young's modulus in the plane of steel sheets, calculated from the ICT based on the results of EBSD data, is in good agreement with the results of direct measurements. The value of Young's modulus in the direction normal to the plane of the sheet and in the section plane in the direction normal to the plane of the sheet, calculated from the ICT and the values of the compliance constants of iron, coincide. Keywords: texture, pole figure, anisotropy, integral characteristics of texture, Young's modulus.