将抽象算子分解为两个二阶算子及其在积分微分方程中的应用

IF 0.7 Q2 MATHEMATICS
I. Parasidis, E. Providas
{"title":"将抽象算子分解为两个二阶算子及其在积分微分方程中的应用","authors":"I. Parasidis, E. Providas","doi":"10.31489/2024m1/149-161","DOIUrl":null,"url":null,"abstract":"Boundary value problem B1x = f with an abstract linear operator B1, corresponding to an Fredholm integro-differential equation with ordinary or partial differential operator is researched. An exact solution to B1x = f in the case when a bijective operator B1 has a factorization of the form B1 =BB0 where B and B0 are two linear more simple than B1 second degree abstract operators, received. Conditions for factorization of the operator B1 and a criterion for bijectivity of B1 are found.","PeriodicalId":29915,"journal":{"name":"Bulletin of the Karaganda University-Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factorization of abstract operators into two second degree operators and its applications to integro-differential equations\",\"authors\":\"I. Parasidis, E. Providas\",\"doi\":\"10.31489/2024m1/149-161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Boundary value problem B1x = f with an abstract linear operator B1, corresponding to an Fredholm integro-differential equation with ordinary or partial differential operator is researched. An exact solution to B1x = f in the case when a bijective operator B1 has a factorization of the form B1 =BB0 where B and B0 are two linear more simple than B1 second degree abstract operators, received. Conditions for factorization of the operator B1 and a criterion for bijectivity of B1 are found.\",\"PeriodicalId\":29915,\"journal\":{\"name\":\"Bulletin of the Karaganda University-Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Karaganda University-Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2024m1/149-161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Karaganda University-Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2024m1/149-161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有抽象线性算子 B1 的边界值问题 B1x = f,它与具有常微分或偏微分算子的弗雷德霍姆积分微分方程相对应。在双射算子 B1 具有 B1 =BB0 形式的因式分解(其中 B 和 B0 是两个比 B1 更简单的二阶线性抽象算子)的情况下,得到了 B1x = f 的精确解。找到了算子 B1 因式分解的条件和 B1 的双射性准则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factorization of abstract operators into two second degree operators and its applications to integro-differential equations
Boundary value problem B1x = f with an abstract linear operator B1, corresponding to an Fredholm integro-differential equation with ordinary or partial differential operator is researched. An exact solution to B1x = f in the case when a bijective operator B1 has a factorization of the form B1 =BB0 where B and B0 are two linear more simple than B1 second degree abstract operators, received. Conditions for factorization of the operator B1 and a criterion for bijectivity of B1 are found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
50.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信