{"title":"三分量玻色-爱因斯坦凝聚态中的六种自旋孤子","authors":"Yuhao Wang, Lingtao Meng, Li-Chen Zhao","doi":"10.1088/1572-9494/ad3906","DOIUrl":null,"url":null,"abstract":"\n Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose-Einstein condensate. Six types of spin soliton solutions can be obtained and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.","PeriodicalId":508917,"journal":{"name":"Communications in Theoretical Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Six Types of Spin Solitons in Three-Component Bose-Einstein Condensates\",\"authors\":\"Yuhao Wang, Lingtao Meng, Li-Chen Zhao\",\"doi\":\"10.1088/1572-9494/ad3906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose-Einstein condensate. Six types of spin soliton solutions can be obtained and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.\",\"PeriodicalId\":508917,\"journal\":{\"name\":\"Communications in Theoretical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Theoretical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1572-9494/ad3906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Six Types of Spin Solitons in Three-Component Bose-Einstein Condensates
Exact analytical solutions are good candidates for studying and explaining the dynamics of solitons in nonlinear systems. We further extend the region of existence of spin solitons in the nonlinearity coefficient space for the spin-1 Bose-Einstein condensate. Six types of spin soliton solutions can be obtained and they exist in different regions. Stability analysis and numerical simulation results indicate that three types of spin solitons are stable against weak noise. The non-integrable properties of the model can induce shape oscillation and increase in speed after the collision between two spin solitons. These results further enrich the soliton family for non-integrable models and can provide theoretical references for experimental studies.