Ashish Bisht, Leo Cavazzini, Matteo Centis Vignali, Fabiola Caso, O. Hammad Ali, F. Ficorella, Maurizio Boscardin, Giovanni Paternoster
{"title":"用于空间实验的 1 平方厘米 LGAD 抖动测量","authors":"Ashish Bisht, Leo Cavazzini, Matteo Centis Vignali, Fabiola Caso, O. Hammad Ali, F. Ficorella, Maurizio Boscardin, Giovanni Paternoster","doi":"10.3390/instruments8020027","DOIUrl":null,"url":null,"abstract":"This work explores the possibility of using Low Gain Avalanche Diodes (LGADs) for tracker-based experiments studying Charged Cosmic Rays (CCRs) in space. While conventional silicon microstrip sensors provide only spatial information about the charged particle passing through the tracker, LGADs have the potential to provide additional timing information with a resolution in the order of tens of picoseconds. For the first time, it has been demonstrated that an LGAD with an active area of approximately 1 cm2 can achieve a jitter of less than 40 ps. A comparison of design and gain layers is carried out to understand which provides the best time resolution. For this purpose, laboratory measurements of sensors’ electrical properties and gain using LED and an Infrared laser, as well as their jitter, were performed.","PeriodicalId":507788,"journal":{"name":"Instruments","volume":"66 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Jitter Measurements of 1 cm2 LGADs for Space Experiments\",\"authors\":\"Ashish Bisht, Leo Cavazzini, Matteo Centis Vignali, Fabiola Caso, O. Hammad Ali, F. Ficorella, Maurizio Boscardin, Giovanni Paternoster\",\"doi\":\"10.3390/instruments8020027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work explores the possibility of using Low Gain Avalanche Diodes (LGADs) for tracker-based experiments studying Charged Cosmic Rays (CCRs) in space. While conventional silicon microstrip sensors provide only spatial information about the charged particle passing through the tracker, LGADs have the potential to provide additional timing information with a resolution in the order of tens of picoseconds. For the first time, it has been demonstrated that an LGAD with an active area of approximately 1 cm2 can achieve a jitter of less than 40 ps. A comparison of design and gain layers is carried out to understand which provides the best time resolution. For this purpose, laboratory measurements of sensors’ electrical properties and gain using LED and an Infrared laser, as well as their jitter, were performed.\",\"PeriodicalId\":507788,\"journal\":{\"name\":\"Instruments\",\"volume\":\"66 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Instruments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/instruments8020027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Instruments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/instruments8020027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
这项工作探索了将低增益雪崩二极管(LGAD)用于基于跟踪器的太空带电宇宙射线(CCR)研究实验的可能性。传统的硅微带传感器只能提供通过跟踪器的带电粒子的空间信息,而低增益雪崩二极管则有可能提供分辨率为几十皮秒的额外时间信息。研究首次证明,有效面积约为 1 平方厘米的 LGAD 可以实现小于 40 ps 的抖动。我们对设计层和增益层进行了比较,以了解哪种设计能提供最佳的时间分辨率。为此,使用 LED 和红外激光对传感器的电气特性和增益及其抖动进行了实验室测量。
Jitter Measurements of 1 cm2 LGADs for Space Experiments
This work explores the possibility of using Low Gain Avalanche Diodes (LGADs) for tracker-based experiments studying Charged Cosmic Rays (CCRs) in space. While conventional silicon microstrip sensors provide only spatial information about the charged particle passing through the tracker, LGADs have the potential to provide additional timing information with a resolution in the order of tens of picoseconds. For the first time, it has been demonstrated that an LGAD with an active area of approximately 1 cm2 can achieve a jitter of less than 40 ps. A comparison of design and gain layers is carried out to understand which provides the best time resolution. For this purpose, laboratory measurements of sensors’ electrical properties and gain using LED and an Infrared laser, as well as their jitter, were performed.