动态系统监控的创新方法:信号处理和参数估计策略

Aryan Gupta, Meera Patel
{"title":"动态系统监控的创新方法:信号处理和参数估计策略","authors":"Aryan Gupta, Meera Patel","doi":"10.9734/jerr/2024/v26i51131","DOIUrl":null,"url":null,"abstract":"Dynamic system monitoring is essential for ensuring the optimal performance and reliability of various systems across multiple domains. This Abstract introduces innovative approaches focusing on signal processing and parameter estimation strategies for dynamic system monitoring. Signal processing techniques such as wavelet transform and adaptive filtering are utilized for noise reduction and feature extraction from sensor data. Additionally, parameter estimation strategies including Kalman filtering and Bayesian inference aid in accurately estimating system parameters and states in real-time. These advanced methods, integrating machine learning and statistical inference, promise enhanced monitoring capabilities, facilitating proactive maintenance and fault detection in complex dynamic systems. Through case studies and simulation results, the effectiveness and versatility of these approaches in addressing real-world challenges are demonstrated, illustrating their potential for advancing the field of dynamic system monitoring.","PeriodicalId":508164,"journal":{"name":"Journal of Engineering Research and Reports","volume":"20 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Approaches for Dynamic System Monitoring: Signal Processing and Parameter Estimation Strategies\",\"authors\":\"Aryan Gupta, Meera Patel\",\"doi\":\"10.9734/jerr/2024/v26i51131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic system monitoring is essential for ensuring the optimal performance and reliability of various systems across multiple domains. This Abstract introduces innovative approaches focusing on signal processing and parameter estimation strategies for dynamic system monitoring. Signal processing techniques such as wavelet transform and adaptive filtering are utilized for noise reduction and feature extraction from sensor data. Additionally, parameter estimation strategies including Kalman filtering and Bayesian inference aid in accurately estimating system parameters and states in real-time. These advanced methods, integrating machine learning and statistical inference, promise enhanced monitoring capabilities, facilitating proactive maintenance and fault detection in complex dynamic systems. Through case studies and simulation results, the effectiveness and versatility of these approaches in addressing real-world challenges are demonstrated, illustrating their potential for advancing the field of dynamic system monitoring.\",\"PeriodicalId\":508164,\"journal\":{\"name\":\"Journal of Engineering Research and Reports\",\"volume\":\"20 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Research and Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/jerr/2024/v26i51131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Research and Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/jerr/2024/v26i51131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态系统监控对于确保多领域各种系统的最佳性能和可靠性至关重要。本摘要介绍了一些创新方法,重点是动态系统监控的信号处理和参数估计策略。小波变换和自适应滤波等信号处理技术可用于降噪和从传感器数据中提取特征。此外,包括卡尔曼滤波和贝叶斯推理在内的参数估计策略有助于实时准确地估计系统参数和状态。这些集成了机器学习和统计推理的先进方法有望增强监控能力,促进复杂动态系统的主动维护和故障检测。通过案例研究和模拟结果,展示了这些方法在应对现实世界挑战方面的有效性和多功能性,说明了它们在推动动态系统监控领域发展方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Innovative Approaches for Dynamic System Monitoring: Signal Processing and Parameter Estimation Strategies
Dynamic system monitoring is essential for ensuring the optimal performance and reliability of various systems across multiple domains. This Abstract introduces innovative approaches focusing on signal processing and parameter estimation strategies for dynamic system monitoring. Signal processing techniques such as wavelet transform and adaptive filtering are utilized for noise reduction and feature extraction from sensor data. Additionally, parameter estimation strategies including Kalman filtering and Bayesian inference aid in accurately estimating system parameters and states in real-time. These advanced methods, integrating machine learning and statistical inference, promise enhanced monitoring capabilities, facilitating proactive maintenance and fault detection in complex dynamic systems. Through case studies and simulation results, the effectiveness and versatility of these approaches in addressing real-world challenges are demonstrated, illustrating their potential for advancing the field of dynamic system monitoring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信