基于样条曲线的焊接机器人路径规划评述

IF 1.1 Q4 ENGINEERING, MECHANICAL
Guan He, H. H. Teo, L. K. Moey
{"title":"基于样条曲线的焊接机器人路径规划评述","authors":"Guan He, H. H. Teo, L. K. Moey","doi":"10.15282/jmes.18.1.2024.10.0785","DOIUrl":null,"url":null,"abstract":"This paper assesses the efficacy of intelligent path planning for welding robots utilizing splines. Traditional path planning methods can result in inefficient and inaccurate welding operations. The study reviews current research and case studies to appraise the practical application of spline-based path planning across diverse industrial scenarios. It underscores the benefits of discovering the shortest path and reducing cycle time while acknowledging challenges such as calibration accuracy and sensitivity to sensor data noise. The introduction of artificial intelligence algorithms in automobile welding path planning enables a more precise replication of the body's design curve, ensuring the continuity and smoothness of the welding process. This, in turn, fosters further automation and optimization of the automotive welding manufacturing process. The current research concentrates on integrating intelligent optimization algorithms and spline curves to provide an efficient and intelligent method for welding path planning. Intelligent path planning based on spline curves demonstrates significant potential in enhancing welding efficiency, determining the shortest path, and holds promising applications in the broader research field of welding path planning.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Review of path planning of welding robot based on spline curve\",\"authors\":\"Guan He, H. H. Teo, L. K. Moey\",\"doi\":\"10.15282/jmes.18.1.2024.10.0785\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper assesses the efficacy of intelligent path planning for welding robots utilizing splines. Traditional path planning methods can result in inefficient and inaccurate welding operations. The study reviews current research and case studies to appraise the practical application of spline-based path planning across diverse industrial scenarios. It underscores the benefits of discovering the shortest path and reducing cycle time while acknowledging challenges such as calibration accuracy and sensitivity to sensor data noise. The introduction of artificial intelligence algorithms in automobile welding path planning enables a more precise replication of the body's design curve, ensuring the continuity and smoothness of the welding process. This, in turn, fosters further automation and optimization of the automotive welding manufacturing process. The current research concentrates on integrating intelligent optimization algorithms and spline curves to provide an efficient and intelligent method for welding path planning. Intelligent path planning based on spline curves demonstrates significant potential in enhancing welding efficiency, determining the shortest path, and holds promising applications in the broader research field of welding path planning.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15282/jmes.18.1.2024.10.0785\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/jmes.18.1.2024.10.0785","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了利用花键的焊接机器人智能路径规划的功效。传统的路径规划方法会导致焊接操作效率低下且不准确。研究回顾了当前的研究和案例研究,评估了基于花键的路径规划在不同工业场景中的实际应用。它强调了发现最短路径和缩短周期时间的好处,同时也承认了校准精度和对传感器数据噪声的敏感性等挑战。在汽车焊接路径规划中引入人工智能算法,可以更精确地复制车身设计曲线,确保焊接过程的连续性和平稳性。这反过来又促进了汽车焊接制造过程的进一步自动化和优化。目前的研究重点是将智能优化算法与花键曲线相结合,为焊接路径规划提供一种高效、智能的方法。基于样条曲线的智能路径规划在提高焊接效率、确定最短路径方面具有巨大潜力,在更广泛的焊接路径规划研究领域具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review of path planning of welding robot based on spline curve
This paper assesses the efficacy of intelligent path planning for welding robots utilizing splines. Traditional path planning methods can result in inefficient and inaccurate welding operations. The study reviews current research and case studies to appraise the practical application of spline-based path planning across diverse industrial scenarios. It underscores the benefits of discovering the shortest path and reducing cycle time while acknowledging challenges such as calibration accuracy and sensitivity to sensor data noise. The introduction of artificial intelligence algorithms in automobile welding path planning enables a more precise replication of the body's design curve, ensuring the continuity and smoothness of the welding process. This, in turn, fosters further automation and optimization of the automotive welding manufacturing process. The current research concentrates on integrating intelligent optimization algorithms and spline curves to provide an efficient and intelligent method for welding path planning. Intelligent path planning based on spline curves demonstrates significant potential in enhancing welding efficiency, determining the shortest path, and holds promising applications in the broader research field of welding path planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
42
审稿时长
20 weeks
期刊介绍: The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信