实施向量自回归法预测巴东县的水稻产量

Margaretha Ratih Dyah Novitasari, I Wayan Sumarjaya, I Gusti Ayu Made Srinadi
{"title":"实施向量自回归法预测巴东县的水稻产量","authors":"Margaretha Ratih Dyah Novitasari, I Wayan Sumarjaya, I Gusti Ayu Made Srinadi","doi":"10.36312/jcm.v5i1.2122","DOIUrl":null,"url":null,"abstract":"Forecast is a process to predict something in the future using past data. One of common model used in forecast is time series data that is vector autoregressive (VAR) model. The research purpose is to know the model and amount of rice production in Badung regency. It is used seconder data get from the BPS office Bali and BMKG Denpasar, that are rice production data, harvest area, and rainfall from Januari 2018 till December 2022. Base on lag optimum model VAR, the research result show that the VAR(1) model is suitable being used. Therefore, base on MAPE forecast criteria the VAR model in this research show the result less accurate. Eventhough the forecast pattern for rice production, harvest area, and rainfall show the stability. Beside that in the first period there is shocking in the IRF analysis but finally reach the stabil condition. \n  \nKeywords: Forecast, VAR models, Rice Production, Harvest Area, Rainfall","PeriodicalId":347651,"journal":{"name":"Jurnal Cahaya Mandalika ISSN 2721-4796 (online)","volume":"57 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IMPLEMENTASI METODE VECTOR AUTOREGRESSIVE DALAM PERAMALAN JUMLAH PRODUKSI PADI DI KABUPATEN BADUNG\",\"authors\":\"Margaretha Ratih Dyah Novitasari, I Wayan Sumarjaya, I Gusti Ayu Made Srinadi\",\"doi\":\"10.36312/jcm.v5i1.2122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forecast is a process to predict something in the future using past data. One of common model used in forecast is time series data that is vector autoregressive (VAR) model. The research purpose is to know the model and amount of rice production in Badung regency. It is used seconder data get from the BPS office Bali and BMKG Denpasar, that are rice production data, harvest area, and rainfall from Januari 2018 till December 2022. Base on lag optimum model VAR, the research result show that the VAR(1) model is suitable being used. Therefore, base on MAPE forecast criteria the VAR model in this research show the result less accurate. Eventhough the forecast pattern for rice production, harvest area, and rainfall show the stability. Beside that in the first period there is shocking in the IRF analysis but finally reach the stabil condition. \\n  \\nKeywords: Forecast, VAR models, Rice Production, Harvest Area, Rainfall\",\"PeriodicalId\":347651,\"journal\":{\"name\":\"Jurnal Cahaya Mandalika ISSN 2721-4796 (online)\",\"volume\":\"57 23\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Cahaya Mandalika ISSN 2721-4796 (online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36312/jcm.v5i1.2122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Cahaya Mandalika ISSN 2721-4796 (online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36312/jcm.v5i1.2122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测是利用过去的数据对未来事物进行预测的过程。预测中常用的模型之一是时间序列数据,即向量自回归(VAR)模型。研究的目的是了解巴东县水稻生产的模型和数量。研究使用了从巴厘岛 BPS 办事处和登巴萨 BMKG 获取的次级数据,即从 2018 年 1 月至 2022 年 12 月的水稻产量数据、收获面积和降雨量。根据滞后最优模型 VAR,研究结果表明 VAR(1) 模型适合使用。因此,根据 MAPE 预测标准,本研究中的 VAR 模型显示结果不太准确。尽管水稻产量、收获面积和降雨量的预测模式显示出稳定性。此外,在第一期的 IRF 分析中出现了震荡,但最终达到了稳定状态。 关键词预测 VAR 模型 水稻产量 收获面积 降水量
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IMPLEMENTASI METODE VECTOR AUTOREGRESSIVE DALAM PERAMALAN JUMLAH PRODUKSI PADI DI KABUPATEN BADUNG
Forecast is a process to predict something in the future using past data. One of common model used in forecast is time series data that is vector autoregressive (VAR) model. The research purpose is to know the model and amount of rice production in Badung regency. It is used seconder data get from the BPS office Bali and BMKG Denpasar, that are rice production data, harvest area, and rainfall from Januari 2018 till December 2022. Base on lag optimum model VAR, the research result show that the VAR(1) model is suitable being used. Therefore, base on MAPE forecast criteria the VAR model in this research show the result less accurate. Eventhough the forecast pattern for rice production, harvest area, and rainfall show the stability. Beside that in the first period there is shocking in the IRF analysis but finally reach the stabil condition.   Keywords: Forecast, VAR models, Rice Production, Harvest Area, Rainfall
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信