{"title":"由于枕木-道碴界面损失造成的轮轨冲击负荷","authors":"Mahsa Farshidi, Yazdan Mohammadian, Jafar Hosseini Manoujan","doi":"10.30574/wjaets.2024.11.2.0095","DOIUrl":null,"url":null,"abstract":"This paper presents a comprehensive study on the simulation and analysis of the loss of sleeper-ballast interfaces in railway systems. Through a combination of Multibody Dynamics (MBD) and Finite Element Analysis (FEA) techniques, accurate modeling and validation processes were employed to investigate the impact of interface loss on wheel-rail impact load. Various scenarios were explored, revealing significant findings: for fewer than 4 sleeper-ballast interface losses, a notable 30% increase in wheel-rail impact load was observed, while the rate of increase in wheel-rail impact load diminished for more than 4 sleepers. Furthermore, gap size emerged as a critical factor, with sizes between 0.2 mm and 1.6 mm leading to a load increase exceeding 65%. The study also highlighted the substantial influence of train speed on load dynamics, particularly evident at speeds up to 200 km/h, where loads escalated significantly, resulting in a 180% increase under adverse conditions. These findings emphasize the importance of considering various factors in maintaining railway infrastructure integrity and safety.","PeriodicalId":275182,"journal":{"name":"World Journal of Advanced Engineering Technology and Sciences","volume":"13 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wheel-rail impact load due to the loss of sleeper-ballast interface\",\"authors\":\"Mahsa Farshidi, Yazdan Mohammadian, Jafar Hosseini Manoujan\",\"doi\":\"10.30574/wjaets.2024.11.2.0095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a comprehensive study on the simulation and analysis of the loss of sleeper-ballast interfaces in railway systems. Through a combination of Multibody Dynamics (MBD) and Finite Element Analysis (FEA) techniques, accurate modeling and validation processes were employed to investigate the impact of interface loss on wheel-rail impact load. Various scenarios were explored, revealing significant findings: for fewer than 4 sleeper-ballast interface losses, a notable 30% increase in wheel-rail impact load was observed, while the rate of increase in wheel-rail impact load diminished for more than 4 sleepers. Furthermore, gap size emerged as a critical factor, with sizes between 0.2 mm and 1.6 mm leading to a load increase exceeding 65%. The study also highlighted the substantial influence of train speed on load dynamics, particularly evident at speeds up to 200 km/h, where loads escalated significantly, resulting in a 180% increase under adverse conditions. These findings emphasize the importance of considering various factors in maintaining railway infrastructure integrity and safety.\",\"PeriodicalId\":275182,\"journal\":{\"name\":\"World Journal of Advanced Engineering Technology and Sciences\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Advanced Engineering Technology and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30574/wjaets.2024.11.2.0095\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Advanced Engineering Technology and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30574/wjaets.2024.11.2.0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wheel-rail impact load due to the loss of sleeper-ballast interface
This paper presents a comprehensive study on the simulation and analysis of the loss of sleeper-ballast interfaces in railway systems. Through a combination of Multibody Dynamics (MBD) and Finite Element Analysis (FEA) techniques, accurate modeling and validation processes were employed to investigate the impact of interface loss on wheel-rail impact load. Various scenarios were explored, revealing significant findings: for fewer than 4 sleeper-ballast interface losses, a notable 30% increase in wheel-rail impact load was observed, while the rate of increase in wheel-rail impact load diminished for more than 4 sleepers. Furthermore, gap size emerged as a critical factor, with sizes between 0.2 mm and 1.6 mm leading to a load increase exceeding 65%. The study also highlighted the substantial influence of train speed on load dynamics, particularly evident at speeds up to 200 km/h, where loads escalated significantly, resulting in a 180% increase under adverse conditions. These findings emphasize the importance of considering various factors in maintaining railway infrastructure integrity and safety.