{"title":"内部喷射漩涡流热空气防结冰特性研究","authors":"Yuyang Liu, Xian Yi","doi":"10.3390/aerospace11040270","DOIUrl":null,"url":null,"abstract":"The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing performance and achieve a more uniform temperature on the surface. A series of numerical computations adopting the SST k − ω turbulent model was carried out to obtain the internal flow and heat transfer characteristics, as well as the surface temperature distributions, considering water evaporation and solid heat conduction. Three jet arrangements, including impingement jets, offset jets, and swirl jets, were studied and compared, which evidently showed that the swirling effect was helpful to elevate the internal heat transfer. Compared to the impingement jets at the Reynolds number of 40,000, the Nusselt number with the offset jets is increased by 19.5%, while the corresponding Nusselt number of the swirl jets is augmented by 44.3%. The swirling flow significantly elevates the swirl number within the internal chamber, intensifying the vortex strength near the wall and increasing the circumferential velocity, which also results in an augmentation of internal pressure loss. By adopting the swirling internal flow, the temperature distribution on the anti-icing surface is more uniform and is increased by up to about 4.1 K in the leading edge when the internal-to-external temperature difference is 80 K. Simultaneously, the heat absorption of water evaporation and the matches between the internal heat transfer and external icing load are of particular importance to determine the anti-icing performance, and this has been discussed in this paper.","PeriodicalId":505273,"journal":{"name":"Aerospace","volume":"25 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Hot Air Anti-Icing Characteristics with Internal Jet-Induced Swirling Flow\",\"authors\":\"Yuyang Liu, Xian Yi\",\"doi\":\"10.3390/aerospace11040270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing performance and achieve a more uniform temperature on the surface. A series of numerical computations adopting the SST k − ω turbulent model was carried out to obtain the internal flow and heat transfer characteristics, as well as the surface temperature distributions, considering water evaporation and solid heat conduction. Three jet arrangements, including impingement jets, offset jets, and swirl jets, were studied and compared, which evidently showed that the swirling effect was helpful to elevate the internal heat transfer. Compared to the impingement jets at the Reynolds number of 40,000, the Nusselt number with the offset jets is increased by 19.5%, while the corresponding Nusselt number of the swirl jets is augmented by 44.3%. The swirling flow significantly elevates the swirl number within the internal chamber, intensifying the vortex strength near the wall and increasing the circumferential velocity, which also results in an augmentation of internal pressure loss. By adopting the swirling internal flow, the temperature distribution on the anti-icing surface is more uniform and is increased by up to about 4.1 K in the leading edge when the internal-to-external temperature difference is 80 K. Simultaneously, the heat absorption of water evaporation and the matches between the internal heat transfer and external icing load are of particular importance to determine the anti-icing performance, and this has been discussed in this paper.\",\"PeriodicalId\":505273,\"journal\":{\"name\":\"Aerospace\",\"volume\":\"25 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/aerospace11040270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/aerospace11040270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
切向射流引起的漩涡流是一种高效的传热技术。本文探讨了机翼/航空发动机漩涡流在热空气防冰室中的应用,旨在提高防冰性能,使表面温度更加均匀。采用 SST k - ω 湍流模型进行了一系列数值计算,以获得内部流动和传热特性以及表面温度分布,并考虑了水蒸发和固体热传导。研究并比较了三种喷射方式,包括撞击式喷射、偏置式喷射和漩涡式喷射,结果表明漩涡效应有助于提高内部传热。与雷诺数为 40,000 的撞击喷流相比,偏置喷流的努塞尔特数提高了 19.5%,而漩涡喷流的相应努塞尔特数提高了 44.3%。漩涡流大大提高了内腔中的漩涡数,增强了内壁附近的漩涡强度,提高了圆周速度,从而也增加了内部压力损失。同时,水蒸发吸热以及内部传热与外部结冰负荷之间的匹配对决定防冰性能尤为重要,本文对此进行了讨论。
Investigations on Hot Air Anti-Icing Characteristics with Internal Jet-Induced Swirling Flow
The tangential jet-induced swirling flow is a highly efficient technology for enhancing heat transfer. This paper explores the application of swirling flow of an airfoil/aero-engine in a hot air anti-icing chamber, aiming to improve the anti-icing performance and achieve a more uniform temperature on the surface. A series of numerical computations adopting the SST k − ω turbulent model was carried out to obtain the internal flow and heat transfer characteristics, as well as the surface temperature distributions, considering water evaporation and solid heat conduction. Three jet arrangements, including impingement jets, offset jets, and swirl jets, were studied and compared, which evidently showed that the swirling effect was helpful to elevate the internal heat transfer. Compared to the impingement jets at the Reynolds number of 40,000, the Nusselt number with the offset jets is increased by 19.5%, while the corresponding Nusselt number of the swirl jets is augmented by 44.3%. The swirling flow significantly elevates the swirl number within the internal chamber, intensifying the vortex strength near the wall and increasing the circumferential velocity, which also results in an augmentation of internal pressure loss. By adopting the swirling internal flow, the temperature distribution on the anti-icing surface is more uniform and is increased by up to about 4.1 K in the leading edge when the internal-to-external temperature difference is 80 K. Simultaneously, the heat absorption of water evaporation and the matches between the internal heat transfer and external icing load are of particular importance to determine the anti-icing performance, and this has been discussed in this paper.