{"title":"具有粘性耗散和 MHD 效应的蠕动通道中交叉流体模型的数学建模","authors":"H. Sadaf, Z. Asghar, Shagufta Ijaz","doi":"10.1002/zamm.202300334","DOIUrl":null,"url":null,"abstract":"In this analysis, Cross‐fluid model along wall properties is investigated. Impact of the magneto‐hydrodynamic on the non‐Newtonian model is also considered. Numerical algorithm MATLAB bvp4c function is adopted for the solution of coupled nonlinear equations along long‐wavelength and low Reynolds number approximations. Viscous dissipation phenomena are counter to discuss the energy possession during flow. Fluid velocity and stream lines for the flow are also precisely determined in this analysis. The various parameters that influence the physical characteristics of flow are plotted through the graph, and their effects are discussed in detail. From the conclusions, the consequence of the flow model parameters is found to be substantial and also noted that the present model has the potential applications to comprehend the bile conduit drive via bladder, gallstones, and blood flow features in living organisms in a much better way than prior.","PeriodicalId":509544,"journal":{"name":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical modeling of Cross‐fluid model in a peristaltic channel with viscous dissipation and MHD effects\",\"authors\":\"H. Sadaf, Z. Asghar, Shagufta Ijaz\",\"doi\":\"10.1002/zamm.202300334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this analysis, Cross‐fluid model along wall properties is investigated. Impact of the magneto‐hydrodynamic on the non‐Newtonian model is also considered. Numerical algorithm MATLAB bvp4c function is adopted for the solution of coupled nonlinear equations along long‐wavelength and low Reynolds number approximations. Viscous dissipation phenomena are counter to discuss the energy possession during flow. Fluid velocity and stream lines for the flow are also precisely determined in this analysis. The various parameters that influence the physical characteristics of flow are plotted through the graph, and their effects are discussed in detail. From the conclusions, the consequence of the flow model parameters is found to be substantial and also noted that the present model has the potential applications to comprehend the bile conduit drive via bladder, gallstones, and blood flow features in living organisms in a much better way than prior.\",\"PeriodicalId\":509544,\"journal\":{\"name\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/zamm.202300334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/zamm.202300334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical modeling of Cross‐fluid model in a peristaltic channel with viscous dissipation and MHD effects
In this analysis, Cross‐fluid model along wall properties is investigated. Impact of the magneto‐hydrodynamic on the non‐Newtonian model is also considered. Numerical algorithm MATLAB bvp4c function is adopted for the solution of coupled nonlinear equations along long‐wavelength and low Reynolds number approximations. Viscous dissipation phenomena are counter to discuss the energy possession during flow. Fluid velocity and stream lines for the flow are also precisely determined in this analysis. The various parameters that influence the physical characteristics of flow are plotted through the graph, and their effects are discussed in detail. From the conclusions, the consequence of the flow model parameters is found to be substantial and also noted that the present model has the potential applications to comprehend the bile conduit drive via bladder, gallstones, and blood flow features in living organisms in a much better way than prior.