含卢卡斯数系数的高维差分方程组解的全局行为

Messaoud Berkal, J. F. Navarro, R. Abo-zeid
{"title":"含卢卡斯数系数的高维差分方程组解的全局行为","authors":"Messaoud Berkal, J. F. Navarro, R. Abo-zeid","doi":"10.3390/mca29020028","DOIUrl":null,"url":null,"abstract":"In this paper, we derive the well-defined solutions to a θ-dimensional system of difference equations. We show that, the well-defined solutions to that system are represented in terms of Fibonacci and Lucas sequences. Moreover, we study the global stability of the solutions to that system. Finally, we give some numerical examples which confirm our theoretical results.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"117 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients\",\"authors\":\"Messaoud Berkal, J. F. Navarro, R. Abo-zeid\",\"doi\":\"10.3390/mca29020028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive the well-defined solutions to a θ-dimensional system of difference equations. We show that, the well-defined solutions to that system are represented in terms of Fibonacci and Lucas sequences. Moreover, we study the global stability of the solutions to that system. Finally, we give some numerical examples which confirm our theoretical results.\",\"PeriodicalId\":352525,\"journal\":{\"name\":\"Mathematical and Computational Applications\",\"volume\":\"117 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca29020028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca29020028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们推导了一个 θ 维差分方程系统的定义明确的解。我们证明,该系统的定义明确的解可以用斐波那契序列和卢卡斯序列来表示。此外,我们还研究了该系统解的全局稳定性。最后,我们给出了一些数值示例来证实我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global Behavior of Solutions to a Higher-Dimensional System of Difference Equations with Lucas Numbers Coefficients
In this paper, we derive the well-defined solutions to a θ-dimensional system of difference equations. We show that, the well-defined solutions to that system are represented in terms of Fibonacci and Lucas sequences. Moreover, we study the global stability of the solutions to that system. Finally, we give some numerical examples which confirm our theoretical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信