机器学习技术在诊断尿路感染中的功效:利用菲律宾临床数据集的研究

Gregorius Airlangga
{"title":"机器学习技术在诊断尿路感染中的功效:利用菲律宾临床数据集的研究","authors":"Gregorius Airlangga","doi":"10.37034/infeb.v6i1.855","DOIUrl":null,"url":null,"abstract":"This research delves into the potential of machine learning models, namely Support Vector Machine (SVM), XGBoost, and LightGBM, to enhance the diagnosis of Urinary Tract Infections (UTIs) based on a comprehensive dataset collected from a local clinic in Northern Mindanao, Philippines, spanning from April 2020 to January 2023. The study integrates clinical variables such as age, gender, and various urine test results including color, transparency, and the presence of substances like glucose, protein, and cells, to determine the most accurate diagnostic model. The dataset presented unique preprocessing challenges, such as converting infant ages into decimal numbers. The SVM with a linear kernel showed remarkable test accuracy of 98.25%, indicating its robustness in handling linear separability in the data. Meanwhile, XGBoost and LightGBM, both with optimal hyperparameter configurations, achieved comparable accuracies of 97.95%. These results underscore the significance of machine learning in medical diagnostics, particularly in settings where swift and reliable decision-making is crucial. Our findings suggest that while ensemble methods like XGBoost and LightGBM are powerful tools for complex datasets, a well-tuned SVM can provide superior accuracy, thus advocating for a data-centric approach in model selection.","PeriodicalId":242689,"journal":{"name":"Jurnal Informatika Ekonomi Bisnis","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy of Machine Learning Techniques in Diagnosing Urinary Tract Infections: A Study Utilizing a Philippine Clinical Dataset\",\"authors\":\"Gregorius Airlangga\",\"doi\":\"10.37034/infeb.v6i1.855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research delves into the potential of machine learning models, namely Support Vector Machine (SVM), XGBoost, and LightGBM, to enhance the diagnosis of Urinary Tract Infections (UTIs) based on a comprehensive dataset collected from a local clinic in Northern Mindanao, Philippines, spanning from April 2020 to January 2023. The study integrates clinical variables such as age, gender, and various urine test results including color, transparency, and the presence of substances like glucose, protein, and cells, to determine the most accurate diagnostic model. The dataset presented unique preprocessing challenges, such as converting infant ages into decimal numbers. The SVM with a linear kernel showed remarkable test accuracy of 98.25%, indicating its robustness in handling linear separability in the data. Meanwhile, XGBoost and LightGBM, both with optimal hyperparameter configurations, achieved comparable accuracies of 97.95%. These results underscore the significance of machine learning in medical diagnostics, particularly in settings where swift and reliable decision-making is crucial. Our findings suggest that while ensemble methods like XGBoost and LightGBM are powerful tools for complex datasets, a well-tuned SVM can provide superior accuracy, thus advocating for a data-centric approach in model selection.\",\"PeriodicalId\":242689,\"journal\":{\"name\":\"Jurnal Informatika Ekonomi Bisnis\",\"volume\":\"29 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Informatika Ekonomi Bisnis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37034/infeb.v6i1.855\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Informatika Ekonomi Bisnis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37034/infeb.v6i1.855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于 2020 年 4 月至 2023 年 1 月期间从菲律宾棉兰老岛北部一家当地诊所收集的综合数据集,深入探讨了机器学习模型(即支持向量机 (SVM)、XGBoost 和 LightGBM)在增强尿路感染 (UTI) 诊断方面的潜力。该研究整合了年龄、性别等临床变量以及各种尿液检测结果,包括颜色、透明度以及葡萄糖、蛋白质和细胞等物质的存在情况,以确定最准确的诊断模型。该数据集提出了独特的预处理挑战,如将婴儿年龄转换为十进制数。带有线性核的 SVM 的测试准确率高达 98.25%,这表明它在处理数据的线性可分性方面非常稳健。同时,采用最佳超参数配置的 XGBoost 和 LightGBM 的准确率也达到了 97.95%。这些结果凸显了机器学习在医学诊断中的重要作用,尤其是在对决策的迅速性和可靠性要求极高的情况下。我们的研究结果表明,虽然像 XGBoost 和 LightGBM 这样的集合方法是处理复杂数据集的强大工具,但经过良好调整的 SVM 可以提供更高的准确性,因此在模型选择中提倡以数据为中心的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficacy of Machine Learning Techniques in Diagnosing Urinary Tract Infections: A Study Utilizing a Philippine Clinical Dataset
This research delves into the potential of machine learning models, namely Support Vector Machine (SVM), XGBoost, and LightGBM, to enhance the diagnosis of Urinary Tract Infections (UTIs) based on a comprehensive dataset collected from a local clinic in Northern Mindanao, Philippines, spanning from April 2020 to January 2023. The study integrates clinical variables such as age, gender, and various urine test results including color, transparency, and the presence of substances like glucose, protein, and cells, to determine the most accurate diagnostic model. The dataset presented unique preprocessing challenges, such as converting infant ages into decimal numbers. The SVM with a linear kernel showed remarkable test accuracy of 98.25%, indicating its robustness in handling linear separability in the data. Meanwhile, XGBoost and LightGBM, both with optimal hyperparameter configurations, achieved comparable accuracies of 97.95%. These results underscore the significance of machine learning in medical diagnostics, particularly in settings where swift and reliable decision-making is crucial. Our findings suggest that while ensemble methods like XGBoost and LightGBM are powerful tools for complex datasets, a well-tuned SVM can provide superior accuracy, thus advocating for a data-centric approach in model selection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信