利用近红外光谱预测 "日内瓦 3 号 "猕猴桃的可溶性固形物浓度

IF 1 4区 农林科学 Q3 HORTICULTURE
Aislinn Mumford, Zachary Abrahamsson, I. Hale
{"title":"利用近红外光谱预测 \"日内瓦 3 号 \"猕猴桃的可溶性固形物浓度","authors":"Aislinn Mumford, Zachary Abrahamsson, I. Hale","doi":"10.21273/horttech05316-23","DOIUrl":null,"url":null,"abstract":"Near infrared (NIR) spectroscopy can be applied to nondestructively assess soluble solids concentration (SSC) of ripening, physiologically mature ‘Geneva 3’ kiwiberries (Actinidia arguta). Spectrographic signatures were captured using a handheld NIR produce quality meter to build predictive models of internal fruit quality for ‘Geneva 3’ kiwiberries that had been held under cold storage (CS) conditions (0 to 1 °C, >90% relative humidity) as well as those not subjected to CS. The CS model, constructed using scans of 133 berries following 4 to 6 weeks in CS, predicts SSC using NIR wavelengths in the range of 729 to 975 nm. A total of 507 berries fresh from the vine were used to construct a predictive model for SSC of non-CS fruit using the same wavelength range. In each case, model predictive performance was investigated using split-half cross-validation, resulting in mean absolute error (MAE) values of 1.2% and 0.8% SSC for the CS and non-CS model, respectively. Each full model was then used to predict SSC of kiwiberries subjected to the alternative CS condition. The non-CS model maintained a low MAE (1.6% SSC) when applied to CS fruit, but the MAE of the CS model applied to non-CS fruit rose considerably (4.5% SSC). The performance of a combined model was tested against both CS and non-CS models, and a benefit to using tailored, CS-specific models was found, particularly in light of cross-seasonal results. As it has proven in many crops, NIR spectroscopy appears to be a promising tool for nondestructively assessing SSC in ‘Geneva 3’ kiwiberry fruit, with accuracy being enhanced by training models specific to postharvest regimes and/or defined ranges of SSC.","PeriodicalId":13144,"journal":{"name":"Horttechnology","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Soluble Solids Concentration of ‘Geneva 3’ Kiwiberries Using Near Infrared Spectroscopy\",\"authors\":\"Aislinn Mumford, Zachary Abrahamsson, I. Hale\",\"doi\":\"10.21273/horttech05316-23\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Near infrared (NIR) spectroscopy can be applied to nondestructively assess soluble solids concentration (SSC) of ripening, physiologically mature ‘Geneva 3’ kiwiberries (Actinidia arguta). Spectrographic signatures were captured using a handheld NIR produce quality meter to build predictive models of internal fruit quality for ‘Geneva 3’ kiwiberries that had been held under cold storage (CS) conditions (0 to 1 °C, >90% relative humidity) as well as those not subjected to CS. The CS model, constructed using scans of 133 berries following 4 to 6 weeks in CS, predicts SSC using NIR wavelengths in the range of 729 to 975 nm. A total of 507 berries fresh from the vine were used to construct a predictive model for SSC of non-CS fruit using the same wavelength range. In each case, model predictive performance was investigated using split-half cross-validation, resulting in mean absolute error (MAE) values of 1.2% and 0.8% SSC for the CS and non-CS model, respectively. Each full model was then used to predict SSC of kiwiberries subjected to the alternative CS condition. The non-CS model maintained a low MAE (1.6% SSC) when applied to CS fruit, but the MAE of the CS model applied to non-CS fruit rose considerably (4.5% SSC). The performance of a combined model was tested against both CS and non-CS models, and a benefit to using tailored, CS-specific models was found, particularly in light of cross-seasonal results. As it has proven in many crops, NIR spectroscopy appears to be a promising tool for nondestructively assessing SSC in ‘Geneva 3’ kiwiberry fruit, with accuracy being enhanced by training models specific to postharvest regimes and/or defined ranges of SSC.\",\"PeriodicalId\":13144,\"journal\":{\"name\":\"Horttechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Horttechnology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21273/horttech05316-23\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HORTICULTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horttechnology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21273/horttech05316-23","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

摘要

近红外光谱法可用于无损评估成熟、生理成熟的 "日内瓦 3 号 "猕猴桃(Actinidia arguta)的可溶性固形物浓度(SSC)。使用手持式近红外农产品质量检测仪采集光谱特征,为在冷藏(CS)条件下(0 至 1 °C,相对湿度大于 90%)保存的 "日内瓦 3 号 "猕猴桃和未经过冷藏的猕猴桃建立内部果实质量预测模型。CS模型是通过对133颗在CS条件下存放4到6周的浆果进行扫描而建立的,利用波长在729到975 nm之间的近红外波长预测SSC。使用相同波长范围的近红外波长,共对 507 颗刚从葡萄树上摘下的浆果构建了一个非柑橘类水果 SSC 预测模型。在每种情况下,都使用分半交叉验证来调查模型的预测性能,结果是 CS 和非 CS 模型的 SSC 平均绝对误差 (MAE) 值分别为 1.2% 和 0.8%。然后,每个完整模型都用于预测猕猴桃在替代 CS 条件下的 SSC。当将非 CS 模型应用于 CS 果实时,其 MAE 保持在较低水平(1.6% SSC),但将 CS 模型应用于非 CS 果实时,其 MAE 则大幅上升(4.5% SSC)。综合模型的性能对照 CS 和非 CS 模型进行了测试,发现使用专门针对 CS 的定制模型有好处,特别是考虑到跨季节结果。正如在许多作物上所证明的那样,近红外光谱似乎是一种很有前途的工具,可用于对 "日内瓦 3 号 "猕猴桃果实的 SSC 进行非破坏性评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Soluble Solids Concentration of ‘Geneva 3’ Kiwiberries Using Near Infrared Spectroscopy
Near infrared (NIR) spectroscopy can be applied to nondestructively assess soluble solids concentration (SSC) of ripening, physiologically mature ‘Geneva 3’ kiwiberries (Actinidia arguta). Spectrographic signatures were captured using a handheld NIR produce quality meter to build predictive models of internal fruit quality for ‘Geneva 3’ kiwiberries that had been held under cold storage (CS) conditions (0 to 1 °C, >90% relative humidity) as well as those not subjected to CS. The CS model, constructed using scans of 133 berries following 4 to 6 weeks in CS, predicts SSC using NIR wavelengths in the range of 729 to 975 nm. A total of 507 berries fresh from the vine were used to construct a predictive model for SSC of non-CS fruit using the same wavelength range. In each case, model predictive performance was investigated using split-half cross-validation, resulting in mean absolute error (MAE) values of 1.2% and 0.8% SSC for the CS and non-CS model, respectively. Each full model was then used to predict SSC of kiwiberries subjected to the alternative CS condition. The non-CS model maintained a low MAE (1.6% SSC) when applied to CS fruit, but the MAE of the CS model applied to non-CS fruit rose considerably (4.5% SSC). The performance of a combined model was tested against both CS and non-CS models, and a benefit to using tailored, CS-specific models was found, particularly in light of cross-seasonal results. As it has proven in many crops, NIR spectroscopy appears to be a promising tool for nondestructively assessing SSC in ‘Geneva 3’ kiwiberry fruit, with accuracy being enhanced by training models specific to postharvest regimes and/or defined ranges of SSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Horttechnology
Horttechnology 农林科学-园艺
CiteScore
2.30
自引率
10.00%
发文量
67
审稿时长
3 months
期刊介绍: HortTechnology serves as the primary outreach publication of the American Society for Horticultural Science. Its mission is to provide science-based information to professional horticulturists, practitioners, and educators; promote and encourage an interchange of ideas among scientists, educators, and professionals working in horticulture; and provide an opportunity for peer review of practical horticultural information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信