Xiaolu Jia, Claudio Feliciani, Sakura Tanida, D. Yanagisawa, K. Nishinari
{"title":"根据缺失传感数据评估行人拥堵情况","authors":"Xiaolu Jia, Claudio Feliciani, Sakura Tanida, D. Yanagisawa, K. Nishinari","doi":"10.20965/jdr.2024.p0336","DOIUrl":null,"url":null,"abstract":"Accurately evaluating pedestrian congestion is crucial for evidence-based improvements in various walking environments. Tracking pedestrian movements in real-world settings often leads to incomplete data collection. Despite this challenge, pedestrian congestion with missing data has not been extensively addressed in existing research. This study examined the impact of missing data on density, speed, and congestion number in the course of evaluating pedestrian congestion. While density is the most commonly used index, speed and congestion number proved more robust.","PeriodicalId":46831,"journal":{"name":"Journal of Disaster Research","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating Pedestrian Congestion Based on Missing Sensing Data\",\"authors\":\"Xiaolu Jia, Claudio Feliciani, Sakura Tanida, D. Yanagisawa, K. Nishinari\",\"doi\":\"10.20965/jdr.2024.p0336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately evaluating pedestrian congestion is crucial for evidence-based improvements in various walking environments. Tracking pedestrian movements in real-world settings often leads to incomplete data collection. Despite this challenge, pedestrian congestion with missing data has not been extensively addressed in existing research. This study examined the impact of missing data on density, speed, and congestion number in the course of evaluating pedestrian congestion. While density is the most commonly used index, speed and congestion number proved more robust.\",\"PeriodicalId\":46831,\"journal\":{\"name\":\"Journal of Disaster Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Disaster Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20965/jdr.2024.p0336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Disaster Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jdr.2024.p0336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluating Pedestrian Congestion Based on Missing Sensing Data
Accurately evaluating pedestrian congestion is crucial for evidence-based improvements in various walking environments. Tracking pedestrian movements in real-world settings often leads to incomplete data collection. Despite this challenge, pedestrian congestion with missing data has not been extensively addressed in existing research. This study examined the impact of missing data on density, speed, and congestion number in the course of evaluating pedestrian congestion. While density is the most commonly used index, speed and congestion number proved more robust.