{"title":"OMP 和 MATLAB 在并行计算方面的比较评估","authors":"Yajnaseni Dash, Ajith Abraham","doi":"10.3233/his-240001","DOIUrl":null,"url":null,"abstract":"The prime goal of parallel computing is the simultaneous parallel execution of several program instructions. Consequently, to accomplish this, the program should be divided into independent sets so that each processor can execute its program part concurrently with the other processors. This study compares OMP and MATLAB, two important parallel computing simulation tools, through the use of a dense matrix multiplication technique. The results showed that OMP outperformed the MATLAB parallel environment by over 8 times in sequential execution and 6 times in parallel execution. From this proposed method, it was also observed that OMP with an even slower processor performs much better than MATLAB with a higher processor. Thus, the present analysis indicates that OMP is a superior environment for parallel computing and should be preferred over parallel MATLAB.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":"9 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative assessment of OMP and MATLAB for parallel computation\",\"authors\":\"Yajnaseni Dash, Ajith Abraham\",\"doi\":\"10.3233/his-240001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prime goal of parallel computing is the simultaneous parallel execution of several program instructions. Consequently, to accomplish this, the program should be divided into independent sets so that each processor can execute its program part concurrently with the other processors. This study compares OMP and MATLAB, two important parallel computing simulation tools, through the use of a dense matrix multiplication technique. The results showed that OMP outperformed the MATLAB parallel environment by over 8 times in sequential execution and 6 times in parallel execution. From this proposed method, it was also observed that OMP with an even slower processor performs much better than MATLAB with a higher processor. Thus, the present analysis indicates that OMP is a superior environment for parallel computing and should be preferred over parallel MATLAB.\",\"PeriodicalId\":88526,\"journal\":{\"name\":\"International journal of hybrid intelligent systems\",\"volume\":\"9 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of hybrid intelligent systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/his-240001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-240001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A comparative assessment of OMP and MATLAB for parallel computation
The prime goal of parallel computing is the simultaneous parallel execution of several program instructions. Consequently, to accomplish this, the program should be divided into independent sets so that each processor can execute its program part concurrently with the other processors. This study compares OMP and MATLAB, two important parallel computing simulation tools, through the use of a dense matrix multiplication technique. The results showed that OMP outperformed the MATLAB parallel environment by over 8 times in sequential execution and 6 times in parallel execution. From this proposed method, it was also observed that OMP with an even slower processor performs much better than MATLAB with a higher processor. Thus, the present analysis indicates that OMP is a superior environment for parallel computing and should be preferred over parallel MATLAB.