Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono
{"title":"利用深度学习方法进行图像皮肤镜皮损分类:系统性文献综述","authors":"Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono","doi":"10.11591/eei.v13i2.6077","DOIUrl":null,"url":null,"abstract":"Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"59 35","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image dermoscopy skin lesion classification using deep learning method: systematic literature review\",\"authors\":\"Arief Kelik Nugroho, Retantyo Wardoyo, Moh Edi Wibowo, H. Soebono\",\"doi\":\"10.11591/eei.v13i2.6077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"59 35\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Image dermoscopy skin lesion classification using deep learning method: systematic literature review
Classifying skin lesions poses a significant challenge due to the distinctive characteristics and diverse shapes they can exhibit, particularly in identifying early-stage melanoma. To address the shortcomings of the prior method, a neural network-driven strategy was introduced to differentiate between two types of skin lesions based on dermoscopic images. This new approach comprises four key stages: i) initial image processing, ii) skin lesion segmentation, iii) feature extraction, and iv) classification using deep neural networks (DNNs). Computers can also provide more accurate diagnosis results. In the review process, the articles are analyzed and summarized to contribute to developing methods or application development in skin lesion diagnosis. The stages include defining the relevant theory, input data, methods used (architecture and modules), training process, and model evaluation. This review also explores information based on trends and users, emphasizing the skin lesion segmentation process, skin lesion classification process, and minimal datasets as recommendations for future research.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]