{"title":"利用 WiFi 信号的信道状态信息检测人类活动:一项实验研究","authors":"Hicham Boudlal, Mohammed Serrhini, Ahmed Tahiri","doi":"10.11591/eei.v13i2.6344","DOIUrl":null,"url":null,"abstract":"Ubiquitous computing aims to seamlessly integrate computing into our daily lives, and requires reliable information on human activities and state for various applications. In this paper, we propose a device-free human activity recognition system that leverages the rich information behind WiFi signals to detect human activities in indoor environments, including walking, sitting, and standing. The key idea of our system is to use the dynamic features of activities, which we carefully examine and analyze through the characteristics of channel state information. We evaluate the impact of location changes on WiFi signal distribution for different activities and design an activity detection system that employs signal processing techniques to extract discriminative features from wireless signals in the frequency and temporal domains. We implement our system on a single off-the-shelf WiFi device connecting to a commercial wireless access point and evaluate it in laboratory and conference room environments. Our experiments demonstrate the feasibility of using WiFi signals for device-free human activity recognition, which could provide a practical and non-intrusive solution for indoor monitoring and ubiquitous computing applications.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"87 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploiting channel state information of WiFi signal for human activity detection: an experimental study\",\"authors\":\"Hicham Boudlal, Mohammed Serrhini, Ahmed Tahiri\",\"doi\":\"10.11591/eei.v13i2.6344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ubiquitous computing aims to seamlessly integrate computing into our daily lives, and requires reliable information on human activities and state for various applications. In this paper, we propose a device-free human activity recognition system that leverages the rich information behind WiFi signals to detect human activities in indoor environments, including walking, sitting, and standing. The key idea of our system is to use the dynamic features of activities, which we carefully examine and analyze through the characteristics of channel state information. We evaluate the impact of location changes on WiFi signal distribution for different activities and design an activity detection system that employs signal processing techniques to extract discriminative features from wireless signals in the frequency and temporal domains. We implement our system on a single off-the-shelf WiFi device connecting to a commercial wireless access point and evaluate it in laboratory and conference room environments. Our experiments demonstrate the feasibility of using WiFi signals for device-free human activity recognition, which could provide a practical and non-intrusive solution for indoor monitoring and ubiquitous computing applications.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"87 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Exploiting channel state information of WiFi signal for human activity detection: an experimental study
Ubiquitous computing aims to seamlessly integrate computing into our daily lives, and requires reliable information on human activities and state for various applications. In this paper, we propose a device-free human activity recognition system that leverages the rich information behind WiFi signals to detect human activities in indoor environments, including walking, sitting, and standing. The key idea of our system is to use the dynamic features of activities, which we carefully examine and analyze through the characteristics of channel state information. We evaluate the impact of location changes on WiFi signal distribution for different activities and design an activity detection system that employs signal processing techniques to extract discriminative features from wireless signals in the frequency and temporal domains. We implement our system on a single off-the-shelf WiFi device connecting to a commercial wireless access point and evaluate it in laboratory and conference room environments. Our experiments demonstrate the feasibility of using WiFi signals for device-free human activity recognition, which could provide a practical and non-intrusive solution for indoor monitoring and ubiquitous computing applications.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]