Dejiang Li, Qiutong Tan, Jiwei Liu, Long Zheng, Chao Hu
{"title":"双起重船在上部模块协同提升过程中的耦合响应分析","authors":"Dejiang Li, Qiutong Tan, Jiwei Liu, Long Zheng, Chao Hu","doi":"10.21278/brod75206","DOIUrl":null,"url":null,"abstract":"Offshore assembly and disassembly operations represent a multi-billion-dollar market potential. Collaborative lifting by multiple vessels has emerged as a new operating paradigm for integrated offshore facilities assembly and disassembly. Hence, this paper investigates the hydro-dynamic interaction of dual lifting vessels in collaborative lifting operations. The coupled motions during multi-body operations are simulated using the commercial software SESAM. The feasibility of the numerical model for coupled motions in collaborative lifting is verified by comparing the numerical results of topside motions, vessel motions, and vertical lifting arm loads against experimental measurements. The effects of wave heading and period on the hydrodynamic responses of the topside module, dual lifting vessels, and lifting arms during collaborative operations are studied. Their influence patterns and mechanisms are analysed in detail. The results show that transverse waves and head wave induce significant heave and pitch motions of the topside module and vessels, but the maximum vertical loads on the lifting arms occur in oblique waves. The motion responses of the topside module and vessels increase with longer wave periods under the oblique sea condition, and roll motions are more sensitive to large periods compared to the gradual rise in heave and pitch.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coupled response analysis of dual lifting vessels during collaborative lifting topside module\",\"authors\":\"Dejiang Li, Qiutong Tan, Jiwei Liu, Long Zheng, Chao Hu\",\"doi\":\"10.21278/brod75206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Offshore assembly and disassembly operations represent a multi-billion-dollar market potential. Collaborative lifting by multiple vessels has emerged as a new operating paradigm for integrated offshore facilities assembly and disassembly. Hence, this paper investigates the hydro-dynamic interaction of dual lifting vessels in collaborative lifting operations. The coupled motions during multi-body operations are simulated using the commercial software SESAM. The feasibility of the numerical model for coupled motions in collaborative lifting is verified by comparing the numerical results of topside motions, vessel motions, and vertical lifting arm loads against experimental measurements. The effects of wave heading and period on the hydrodynamic responses of the topside module, dual lifting vessels, and lifting arms during collaborative operations are studied. Their influence patterns and mechanisms are analysed in detail. The results show that transverse waves and head wave induce significant heave and pitch motions of the topside module and vessels, but the maximum vertical loads on the lifting arms occur in oblique waves. The motion responses of the topside module and vessels increase with longer wave periods under the oblique sea condition, and roll motions are more sensitive to large periods compared to the gradual rise in heave and pitch.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod75206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod75206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Coupled response analysis of dual lifting vessels during collaborative lifting topside module
Offshore assembly and disassembly operations represent a multi-billion-dollar market potential. Collaborative lifting by multiple vessels has emerged as a new operating paradigm for integrated offshore facilities assembly and disassembly. Hence, this paper investigates the hydro-dynamic interaction of dual lifting vessels in collaborative lifting operations. The coupled motions during multi-body operations are simulated using the commercial software SESAM. The feasibility of the numerical model for coupled motions in collaborative lifting is verified by comparing the numerical results of topside motions, vessel motions, and vertical lifting arm loads against experimental measurements. The effects of wave heading and period on the hydrodynamic responses of the topside module, dual lifting vessels, and lifting arms during collaborative operations are studied. Their influence patterns and mechanisms are analysed in detail. The results show that transverse waves and head wave induce significant heave and pitch motions of the topside module and vessels, but the maximum vertical loads on the lifting arms occur in oblique waves. The motion responses of the topside module and vessels increase with longer wave periods under the oblique sea condition, and roll motions are more sensitive to large periods compared to the gradual rise in heave and pitch.
期刊介绍:
The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.