Jing Mei Leong, Mohd Hanafi Ahmad Hijazi, A. Saudi, Chin Kim On, Ching Fui Fui, H. Haviluddin
{"title":"基于 CNN 和对比度受限直方图均衡化的自动鱼类计数系统的开发和可用性测试","authors":"Jing Mei Leong, Mohd Hanafi Ahmad Hijazi, A. Saudi, Chin Kim On, Ching Fui Fui, H. Haviluddin","doi":"10.11591/eei.v13i2.5840","DOIUrl":null,"url":null,"abstract":"The aquaculture industry has rapidly grown over the year. One pertinent aspect is the ability of the aquaculture farm management to accurately count the fish populations to provide effective feeding and the control of breeding density. The current practice of counting the fish manually increased the hatchery workers workload and led to inefficiency. The presented work proposed an intelligent, web-based fish counting system to assist hatchery workers in counting fish from images. The methodology consists of two phases. First, an intelligent fish counting engine is developed. The captured image was first enhanced using the contrast limited adaptive histogram equalization. A deep learning architecture in the form of you only look once (YOLO)v5 is used to generate a model to identify and count fish on the image. Second, a web-based application is developed to implement the developed fish counting engine. When applied to the test data, the developed engine recorded a precision of 98.7% and a recall of 65.5%. The system is also evaluated by hatchery workers in the University Malaysia Sabah fish hatchery. The results of the usability and functionality evaluations indicate that the system is acceptable, with some future work suggested based on the feedback received.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"6 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The development and usability test of an automated fish counting system based on CNN and contrast limited histogram equalization\",\"authors\":\"Jing Mei Leong, Mohd Hanafi Ahmad Hijazi, A. Saudi, Chin Kim On, Ching Fui Fui, H. Haviluddin\",\"doi\":\"10.11591/eei.v13i2.5840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aquaculture industry has rapidly grown over the year. One pertinent aspect is the ability of the aquaculture farm management to accurately count the fish populations to provide effective feeding and the control of breeding density. The current practice of counting the fish manually increased the hatchery workers workload and led to inefficiency. The presented work proposed an intelligent, web-based fish counting system to assist hatchery workers in counting fish from images. The methodology consists of two phases. First, an intelligent fish counting engine is developed. The captured image was first enhanced using the contrast limited adaptive histogram equalization. A deep learning architecture in the form of you only look once (YOLO)v5 is used to generate a model to identify and count fish on the image. Second, a web-based application is developed to implement the developed fish counting engine. When applied to the test data, the developed engine recorded a precision of 98.7% and a recall of 65.5%. The system is also evaluated by hatchery workers in the University Malaysia Sabah fish hatchery. The results of the usability and functionality evaluations indicate that the system is acceptable, with some future work suggested based on the feedback received.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"6 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.5840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.5840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
The development and usability test of an automated fish counting system based on CNN and contrast limited histogram equalization
The aquaculture industry has rapidly grown over the year. One pertinent aspect is the ability of the aquaculture farm management to accurately count the fish populations to provide effective feeding and the control of breeding density. The current practice of counting the fish manually increased the hatchery workers workload and led to inefficiency. The presented work proposed an intelligent, web-based fish counting system to assist hatchery workers in counting fish from images. The methodology consists of two phases. First, an intelligent fish counting engine is developed. The captured image was first enhanced using the contrast limited adaptive histogram equalization. A deep learning architecture in the form of you only look once (YOLO)v5 is used to generate a model to identify and count fish on the image. Second, a web-based application is developed to implement the developed fish counting engine. When applied to the test data, the developed engine recorded a precision of 98.7% and a recall of 65.5%. The system is also evaluated by hatchery workers in the University Malaysia Sabah fish hatchery. The results of the usability and functionality evaluations indicate that the system is acceptable, with some future work suggested based on the feedback received.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]