基于机器人操作系统的海龟机器人自主导航仿真系统

Q2 Mathematics
M. Ghazal, Murtadha Al-Ghadhanfari, N. Waisi
{"title":"基于机器人操作系统的海龟机器人自主导航仿真系统","authors":"M. Ghazal, Murtadha Al-Ghadhanfari, N. Waisi","doi":"10.11591/eei.v13i2.6419","DOIUrl":null,"url":null,"abstract":"Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of autonomous navigation of turtlebot robot system based on robot operating system\",\"authors\":\"M. Ghazal, Murtadha Al-Ghadhanfari, N. Waisi\",\"doi\":\"10.11591/eei.v13i2.6419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

最近,复杂系统科学的重点已转向建模、仿真和行为控制。建立在机器人操作系统(ROS)基础上的有效仿真软件被用于机器人开发,以促进仿真环境与控制行为硬件测试之间的平稳过渡。在本文中,我们演示了如何利用同步定位和映射(SLAM)算法让机器人自主导航。Gazebo 用于模拟机器人,Rviz 用于可视化模拟数据。G-mapping 软件包用于利用从各种传感器(包括激光和里程计)收集的数据创建地图。为了测试和实现自主导航,我们在 Gazebo 生成的模拟环境中使用了 Turtlebot。我们认为,利用这些重要工具对 ROS 进行更多的研究,可能会使机器人测试得到更广泛的采用,进一步实现评估自动化和高效的机器人系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulation of autonomous navigation of turtlebot robot system based on robot operating system
Complex system science has recently shifted its focus to include modeling, simulation, and behavior control. An effective simulation software built on robot operating system (ROS) is used in robotics development to facilitate the smooth transition between the simulation environment and the hardware testing of control behavior. In this paper, we demonstrate how the simultaneous localization and mapping (SLAM) algorithm can be used to allow a robot to navigate autonomously. The Gazebo is used to simulate the robot, and Rviz is used to visualize the simulated data. The G-mapping package is used to create maps using collected data from a variety of sensors, including laser and odometry. To test and implement autonomous navigation, a Turtlebot was used in a Gazebo-generated simulated environment. In our opinion, additional study on ROS using these important tools might lead to a greater adoption of robotics tests performed, further evaluation automation, and efficient robotic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Electrical Engineering and Informatics
Bulletin of Electrical Engineering and Informatics Computer Science-Computer Science (miscellaneous)
CiteScore
3.60
自引率
0.00%
发文量
0
期刊介绍: Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信