钙铝硅酸盐玻璃的杨氏模量:机器学习的启示

Mouna SBAI IDRISSI, Ahmed EL HAMDAOUI, Tarik Chafiq
{"title":"钙铝硅酸盐玻璃的杨氏模量:机器学习的启示","authors":"Mouna SBAI IDRISSI, Ahmed EL HAMDAOUI, Tarik Chafiq","doi":"10.53464/jmte.01.2024.04","DOIUrl":null,"url":null,"abstract":"Modern technologies require the development of new materials with exceptional properties. Machine Learning (ML) and Deep Learning (DL) techniques have become important tools for discovering new materials and predicting the properties of specific materials, such as glasses. In this paper, we used ML and DL techniques to predict the Young's modulus E of Calcium-Alumino-Silicate (CAS) glasses based on their chemical composition. We evaluated four different algorithms, including Polynomial Regression (PR), Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron Regressor (MLPRegressor). We found that the PR algorithm provides excellent predictions without Cross-Validation (CV), while the MLPRegressor yields the best performance when CV is implemented.","PeriodicalId":476016,"journal":{"name":"Journal of marine technology and environment","volume":"12 41","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"YOUNG’S MODULUS OF CALCIUM-ALUMINO-SILICATE GLASSES: INSIGHT\\nFROM MACHINE LEARNING\",\"authors\":\"Mouna SBAI IDRISSI, Ahmed EL HAMDAOUI, Tarik Chafiq\",\"doi\":\"10.53464/jmte.01.2024.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern technologies require the development of new materials with exceptional properties. Machine Learning (ML) and Deep Learning (DL) techniques have become important tools for discovering new materials and predicting the properties of specific materials, such as glasses. In this paper, we used ML and DL techniques to predict the Young's modulus E of Calcium-Alumino-Silicate (CAS) glasses based on their chemical composition. We evaluated four different algorithms, including Polynomial Regression (PR), Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron Regressor (MLPRegressor). We found that the PR algorithm provides excellent predictions without Cross-Validation (CV), while the MLPRegressor yields the best performance when CV is implemented.\",\"PeriodicalId\":476016,\"journal\":{\"name\":\"Journal of marine technology and environment\",\"volume\":\"12 41\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of marine technology and environment\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.53464/jmte.01.2024.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of marine technology and environment","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.53464/jmte.01.2024.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现代技术需要开发具有特殊性能的新材料。机器学习(ML)和深度学习(DL)技术已成为发现新材料和预测特定材料(如玻璃)特性的重要工具。在本文中,我们使用 ML 和 DL 技术,根据钙铝硅酸盐(CAS)玻璃的化学成分预测其杨氏模量 E。我们评估了四种不同的算法,包括多项式回归 (PR)、随机森林 (RF)、K-近邻 (KNN) 和多层感知器回归 (MLPRegressor)。我们发现,PR 算法在不使用交叉验证 (CV) 的情况下也能提供出色的预测,而 MLPRegressor 在使用 CV 时性能最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
YOUNG’S MODULUS OF CALCIUM-ALUMINO-SILICATE GLASSES: INSIGHT FROM MACHINE LEARNING
Modern technologies require the development of new materials with exceptional properties. Machine Learning (ML) and Deep Learning (DL) techniques have become important tools for discovering new materials and predicting the properties of specific materials, such as glasses. In this paper, we used ML and DL techniques to predict the Young's modulus E of Calcium-Alumino-Silicate (CAS) glasses based on their chemical composition. We evaluated four different algorithms, including Polynomial Regression (PR), Random Forest (RF), K-Nearest Neighbors (KNN), and Multi-Layer Perceptron Regressor (MLPRegressor). We found that the PR algorithm provides excellent predictions without Cross-Validation (CV), while the MLPRegressor yields the best performance when CV is implemented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信