{"title":"针对具有复杂约束条件的经济负荷调度问题的金豺优化法","authors":"Ramamoorthi Ragunathan, Balamurugan Ramadoss","doi":"10.11591/eei.v13i2.6572","DOIUrl":null,"url":null,"abstract":"This research paper uses the golden jackal optimization (GJO), a novel meta-heuristic algorithm, to address power system economic load dispatch (ELD) problems. The GJO emulates the hunting behavior of golden jackals. GJO algorithm uses the cooperative attacking behavior of golden jackals to tackle complicated optimization problems efficaciously. The objective of ELD problem is to distribute power system load requirement to the different generators with a minimum total fuel cost of generation. ELD problems are highly complex, non-linear, and non-convex optimization problems while considering constraints namely valve point loading effect (VPL) and prohibited operating zones (POZs). The proposed GJO algorithm is applied to solve complex, non-linear, and non-convex ELD problems. Six different test systems having 6, 10, 13, 40, and 140 generators with various constraints are used to validate the usefulness of the suggested GJO method. Simulation outcomes of the test system are compared with various algorithms reported in the algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), and backtracking search algorithm (BSA). Results show that the proposed GJO algorithm produces minimal fuel cost and has good convergence in solving ELD problems of power system engineering.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"10 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Golden jackal optimization for economic load dispatch problems with complex constraints\",\"authors\":\"Ramamoorthi Ragunathan, Balamurugan Ramadoss\",\"doi\":\"10.11591/eei.v13i2.6572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research paper uses the golden jackal optimization (GJO), a novel meta-heuristic algorithm, to address power system economic load dispatch (ELD) problems. The GJO emulates the hunting behavior of golden jackals. GJO algorithm uses the cooperative attacking behavior of golden jackals to tackle complicated optimization problems efficaciously. The objective of ELD problem is to distribute power system load requirement to the different generators with a minimum total fuel cost of generation. ELD problems are highly complex, non-linear, and non-convex optimization problems while considering constraints namely valve point loading effect (VPL) and prohibited operating zones (POZs). The proposed GJO algorithm is applied to solve complex, non-linear, and non-convex ELD problems. Six different test systems having 6, 10, 13, 40, and 140 generators with various constraints are used to validate the usefulness of the suggested GJO method. Simulation outcomes of the test system are compared with various algorithms reported in the algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), and backtracking search algorithm (BSA). Results show that the proposed GJO algorithm produces minimal fuel cost and has good convergence in solving ELD problems of power system engineering.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"10 15\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.6572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.6572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Golden jackal optimization for economic load dispatch problems with complex constraints
This research paper uses the golden jackal optimization (GJO), a novel meta-heuristic algorithm, to address power system economic load dispatch (ELD) problems. The GJO emulates the hunting behavior of golden jackals. GJO algorithm uses the cooperative attacking behavior of golden jackals to tackle complicated optimization problems efficaciously. The objective of ELD problem is to distribute power system load requirement to the different generators with a minimum total fuel cost of generation. ELD problems are highly complex, non-linear, and non-convex optimization problems while considering constraints namely valve point loading effect (VPL) and prohibited operating zones (POZs). The proposed GJO algorithm is applied to solve complex, non-linear, and non-convex ELD problems. Six different test systems having 6, 10, 13, 40, and 140 generators with various constraints are used to validate the usefulness of the suggested GJO method. Simulation outcomes of the test system are compared with various algorithms reported in the algorithms such as particle swarm optimization (PSO), ant colony optimization (ACO), and backtracking search algorithm (BSA). Results show that the proposed GJO algorithm produces minimal fuel cost and has good convergence in solving ELD problems of power system engineering.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]