{"title":"基于深度学习的视频异常识别松鼠搜索法","authors":"Laxmikant Malphedwar, Thevasigamani Rajesh Kumar","doi":"10.11591/eei.v13i2.5933","DOIUrl":null,"url":null,"abstract":"The monitoring of human behavior and traffic surveillance in various locations has become increasingly important in recent years. However, identifying abnormal activity in real-world settings is a challenging task due to the many different types of worrisome and abnormal actions, including theft, violence, and accidents. To address this issue, this paper proposes a new framework for deep learning-based anomaly identification in videos using the squirrel search algorithm and bidirectional long short-term memory (BiLSTM). The proposed method combines the squirrel search algorithm, an optimization technique inspired by nature, with BiLSTM for anomaly recognition. The framework uses the knowledge gained from a sequence of frames to categorize the video as either typical or abnormal. The proposed method was exhaustively tested in several benchmark datasets for anomaly detection to confirm its functionality in challenging surveillance circumstances. The results show that the proposed framework outperforms existing methods in terms of area under curve (AUC) values, with a test set AUC score of 93.1%. The paper also discusses the importance of feature selection and the benefits of using BiLSTM over traditional unidirectional long short-term memory (LSTM) models for anomaly detection in videos. Overall, the proposed framework provides a highly precise computerization of the system, making it an effective tool for identifying abnormal human behavior in surveillance footage.","PeriodicalId":37619,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"1 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Squirrel search method for deep learning-based anomaly identification in videos\",\"authors\":\"Laxmikant Malphedwar, Thevasigamani Rajesh Kumar\",\"doi\":\"10.11591/eei.v13i2.5933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The monitoring of human behavior and traffic surveillance in various locations has become increasingly important in recent years. However, identifying abnormal activity in real-world settings is a challenging task due to the many different types of worrisome and abnormal actions, including theft, violence, and accidents. To address this issue, this paper proposes a new framework for deep learning-based anomaly identification in videos using the squirrel search algorithm and bidirectional long short-term memory (BiLSTM). The proposed method combines the squirrel search algorithm, an optimization technique inspired by nature, with BiLSTM for anomaly recognition. The framework uses the knowledge gained from a sequence of frames to categorize the video as either typical or abnormal. The proposed method was exhaustively tested in several benchmark datasets for anomaly detection to confirm its functionality in challenging surveillance circumstances. The results show that the proposed framework outperforms existing methods in terms of area under curve (AUC) values, with a test set AUC score of 93.1%. The paper also discusses the importance of feature selection and the benefits of using BiLSTM over traditional unidirectional long short-term memory (LSTM) models for anomaly detection in videos. Overall, the proposed framework provides a highly precise computerization of the system, making it an effective tool for identifying abnormal human behavior in surveillance footage.\",\"PeriodicalId\":37619,\"journal\":{\"name\":\"Bulletin of Electrical Engineering and Informatics\",\"volume\":\"1 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Electrical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/eei.v13i2.5933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i2.5933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Squirrel search method for deep learning-based anomaly identification in videos
The monitoring of human behavior and traffic surveillance in various locations has become increasingly important in recent years. However, identifying abnormal activity in real-world settings is a challenging task due to the many different types of worrisome and abnormal actions, including theft, violence, and accidents. To address this issue, this paper proposes a new framework for deep learning-based anomaly identification in videos using the squirrel search algorithm and bidirectional long short-term memory (BiLSTM). The proposed method combines the squirrel search algorithm, an optimization technique inspired by nature, with BiLSTM for anomaly recognition. The framework uses the knowledge gained from a sequence of frames to categorize the video as either typical or abnormal. The proposed method was exhaustively tested in several benchmark datasets for anomaly detection to confirm its functionality in challenging surveillance circumstances. The results show that the proposed framework outperforms existing methods in terms of area under curve (AUC) values, with a test set AUC score of 93.1%. The paper also discusses the importance of feature selection and the benefits of using BiLSTM over traditional unidirectional long short-term memory (LSTM) models for anomaly detection in videos. Overall, the proposed framework provides a highly precise computerization of the system, making it an effective tool for identifying abnormal human behavior in surveillance footage.
期刊介绍:
Bulletin of Electrical Engineering and Informatics publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Computer Science, Computer Engineering and Informatics[...] Electronics[...] Electrical and Power Engineering[...] Telecommunication and Information Technology[...]Instrumentation and Control Engineering[...]