支撑材料对长期运行化学循环氢的铁基载氧颗粒的稳定作用

Fabio Blaschke , Marjan Bele , Brigitte Bitschnau , Viktor Hacker
{"title":"支撑材料对长期运行化学循环氢的铁基载氧颗粒的稳定作用","authors":"Fabio Blaschke ,&nbsp;Marjan Bele ,&nbsp;Brigitte Bitschnau ,&nbsp;Viktor Hacker","doi":"10.1016/j.sctalk.2024.100335","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the impact of iron-based oxygen carriers (OCs) on green hydrogen production using a fixed-bed chemical looping (CL) process, aiming for industrial scalability. We conducted a comprehensive material screening of OCs comprising Fe<sub>2</sub>O<sub>3</sub> with support materials (Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, ZrO<sub>2</sub>) at an 80/20 wt.-% ratio. Focus was placed on ZrO<sub>2</sub>, pure and doped with CaO, MgO, and Y<sub>2</sub>O<sub>3</sub>, to examine their effects on redox efficiency and hydrogen production. Notably, ZrO<sub>2</sub> doped with MgO and Y<sub>2</sub>O<sub>3</sub> achieved a specific hydrogen production over 12 molH<sub>2</sub>/kgOC at a small scale, attributed to chemical inertness and porous morphology, enhancing cyclic stability over traditional TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> supports. Large-scale testing of the most promising OC compositions in a 250 g fixed-bed reactor for 100 cycles revealed that doping ZrO<sub>2</sub> with Y<sub>2</sub>O<sub>3</sub> not only prevents phase transitions but also ensures higher cyclic stability among tested OCs. Our findings underscore the critical role of microscopic phenomena in the CL process's efficiency and introduce a novel approach for designing environmentally friendly OCs for effective hydrogen production.</p></div>","PeriodicalId":101148,"journal":{"name":"Science Talks","volume":"10 ","pages":"Article 100335"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772569324000434/pdfft?md5=6e47598b47c5d45d3def602d7600eacc&pid=1-s2.0-S2772569324000434-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Stabilizing effect of support materials on iron-based oxygen carrier pellets for chemical looping hydrogen in long-term operation\",\"authors\":\"Fabio Blaschke ,&nbsp;Marjan Bele ,&nbsp;Brigitte Bitschnau ,&nbsp;Viktor Hacker\",\"doi\":\"10.1016/j.sctalk.2024.100335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the impact of iron-based oxygen carriers (OCs) on green hydrogen production using a fixed-bed chemical looping (CL) process, aiming for industrial scalability. We conducted a comprehensive material screening of OCs comprising Fe<sub>2</sub>O<sub>3</sub> with support materials (Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, ZrO<sub>2</sub>) at an 80/20 wt.-% ratio. Focus was placed on ZrO<sub>2</sub>, pure and doped with CaO, MgO, and Y<sub>2</sub>O<sub>3</sub>, to examine their effects on redox efficiency and hydrogen production. Notably, ZrO<sub>2</sub> doped with MgO and Y<sub>2</sub>O<sub>3</sub> achieved a specific hydrogen production over 12 molH<sub>2</sub>/kgOC at a small scale, attributed to chemical inertness and porous morphology, enhancing cyclic stability over traditional TiO<sub>2</sub> and Al<sub>2</sub>O<sub>3</sub> supports. Large-scale testing of the most promising OC compositions in a 250 g fixed-bed reactor for 100 cycles revealed that doping ZrO<sub>2</sub> with Y<sub>2</sub>O<sub>3</sub> not only prevents phase transitions but also ensures higher cyclic stability among tested OCs. Our findings underscore the critical role of microscopic phenomena in the CL process's efficiency and introduce a novel approach for designing environmentally friendly OCs for effective hydrogen production.</p></div>\",\"PeriodicalId\":101148,\"journal\":{\"name\":\"Science Talks\",\"volume\":\"10 \",\"pages\":\"Article 100335\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772569324000434/pdfft?md5=6e47598b47c5d45d3def602d7600eacc&pid=1-s2.0-S2772569324000434-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Talks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772569324000434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Talks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772569324000434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了铁基氧载体(OCs)对使用固定床化学循环(CL)工艺进行绿色制氢的影响,旨在实现工业规模化。我们对由 Fe2O3 和支撑材料(Al2O3、TiO2、ZrO2)组成的 80/20 重量比的 OC 进行了全面的材料筛选。重点放在纯 ZrO2 和掺杂 CaO、MgO 和 Y2O3 的 ZrO2 上,以研究它们对氧化还原效率和制氢的影响。值得注意的是,掺杂了氧化镁和氧化亚铜的 ZrO2 在小规模下的特定产氢量超过了 12 molH2/kgOC,这归功于其化学惰性和多孔形态,与传统的 TiO2 和 Al2O3 相比,增强了循环稳定性。在 250 克固定床反应器中对最有前途的 OC 成分进行 100 次循环的大规模测试表明,在 ZrO2 中掺杂 Y2O3 不仅能防止相变,还能确保测试的 OC 具有更高的循环稳定性。我们的研究结果强调了微观现象在化学合成过程效率中的关键作用,并为设计环境友好型 OCs 以实现有效制氢引入了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilizing effect of support materials on iron-based oxygen carrier pellets for chemical looping hydrogen in long-term operation

This work investigates the impact of iron-based oxygen carriers (OCs) on green hydrogen production using a fixed-bed chemical looping (CL) process, aiming for industrial scalability. We conducted a comprehensive material screening of OCs comprising Fe2O3 with support materials (Al2O3, TiO2, ZrO2) at an 80/20 wt.-% ratio. Focus was placed on ZrO2, pure and doped with CaO, MgO, and Y2O3, to examine their effects on redox efficiency and hydrogen production. Notably, ZrO2 doped with MgO and Y2O3 achieved a specific hydrogen production over 12 molH2/kgOC at a small scale, attributed to chemical inertness and porous morphology, enhancing cyclic stability over traditional TiO2 and Al2O3 supports. Large-scale testing of the most promising OC compositions in a 250 g fixed-bed reactor for 100 cycles revealed that doping ZrO2 with Y2O3 not only prevents phase transitions but also ensures higher cyclic stability among tested OCs. Our findings underscore the critical role of microscopic phenomena in the CL process's efficiency and introduce a novel approach for designing environmentally friendly OCs for effective hydrogen production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信