Louise Burnie , Nachiappan Chockalingam , Alex Holder , Tim Claypole , Liam Kilduff , Neil Bezodis
{"title":"在运动和健康应用中使用压力传感器时的测试协议和测量技术:比较综述","authors":"Louise Burnie , Nachiappan Chockalingam , Alex Holder , Tim Claypole , Liam Kilduff , Neil Bezodis","doi":"10.1016/j.foot.2024.102094","DOIUrl":null,"url":null,"abstract":"<div><p>Plantar pressure measurement systems are routinely used in sports and health applications to assess locomotion. The purpose of this review is to describe and critically discuss: (a) applications of the pressure measurement systems in sport and healthcare, (b) testing protocols and considerations for clinical gait analysis, (c) clinical recommendations for interpreting plantar pressure data, (d) calibration procedures and their accuracy, and (e) the future of pressure sensor data analysis. Rigid pressure platforms are typically used to measure plantar pressures for the assessment of foot function during standing and walking, particularly when barefoot, and are the most accurate for measuring plantar pressures. For reliable data, two step protocol prior to contacting the pressure plate is recommended. In-shoe systems are most suitable for measuring plantar pressures in the field during daily living or dynamic sporting movements as they are often wireless and can measure multiple steps. They are the most suitable equipment to assess the effects of footwear and orthotics on plantar pressures. However, they typically have lower spatial resolution and sampling frequency than platform systems. Users of pressure measurement systems need to consider the suitability of the calibration procedures for their chosen application when selecting and using a pressure measurement system. For some applications, a bespoke calibration procedure is required to improve validity and reliability of the pressure measurement system. The testing machines that are commonly used for dynamic calibration of pressure measurement systems frequently have loading rates of less than even those found in walking, so the development of testing protocols that truly measure the loading rates found in many sporting movements are required. There is clear potential for AI techniques to assist in the analysis and interpretation of plantar pressure data to enable the more complete use of pressure system data in clinical diagnoses and monitoring.</p></div>","PeriodicalId":12349,"journal":{"name":"Foot","volume":"59 ","pages":"Article 102094"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0958259224000270/pdfft?md5=a990609974a077143576b74f5f0b210f&pid=1-s2.0-S0958259224000270-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Testing protocols and measurement techniques when using pressure sensors for sport and health applications: A comparative review\",\"authors\":\"Louise Burnie , Nachiappan Chockalingam , Alex Holder , Tim Claypole , Liam Kilduff , Neil Bezodis\",\"doi\":\"10.1016/j.foot.2024.102094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Plantar pressure measurement systems are routinely used in sports and health applications to assess locomotion. The purpose of this review is to describe and critically discuss: (a) applications of the pressure measurement systems in sport and healthcare, (b) testing protocols and considerations for clinical gait analysis, (c) clinical recommendations for interpreting plantar pressure data, (d) calibration procedures and their accuracy, and (e) the future of pressure sensor data analysis. Rigid pressure platforms are typically used to measure plantar pressures for the assessment of foot function during standing and walking, particularly when barefoot, and are the most accurate for measuring plantar pressures. For reliable data, two step protocol prior to contacting the pressure plate is recommended. In-shoe systems are most suitable for measuring plantar pressures in the field during daily living or dynamic sporting movements as they are often wireless and can measure multiple steps. They are the most suitable equipment to assess the effects of footwear and orthotics on plantar pressures. However, they typically have lower spatial resolution and sampling frequency than platform systems. Users of pressure measurement systems need to consider the suitability of the calibration procedures for their chosen application when selecting and using a pressure measurement system. For some applications, a bespoke calibration procedure is required to improve validity and reliability of the pressure measurement system. The testing machines that are commonly used for dynamic calibration of pressure measurement systems frequently have loading rates of less than even those found in walking, so the development of testing protocols that truly measure the loading rates found in many sporting movements are required. There is clear potential for AI techniques to assist in the analysis and interpretation of plantar pressure data to enable the more complete use of pressure system data in clinical diagnoses and monitoring.</p></div>\",\"PeriodicalId\":12349,\"journal\":{\"name\":\"Foot\",\"volume\":\"59 \",\"pages\":\"Article 102094\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0958259224000270/pdfft?md5=a990609974a077143576b74f5f0b210f&pid=1-s2.0-S0958259224000270-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Foot\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0958259224000270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Health Professions\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foot","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0958259224000270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
Testing protocols and measurement techniques when using pressure sensors for sport and health applications: A comparative review
Plantar pressure measurement systems are routinely used in sports and health applications to assess locomotion. The purpose of this review is to describe and critically discuss: (a) applications of the pressure measurement systems in sport and healthcare, (b) testing protocols and considerations for clinical gait analysis, (c) clinical recommendations for interpreting plantar pressure data, (d) calibration procedures and their accuracy, and (e) the future of pressure sensor data analysis. Rigid pressure platforms are typically used to measure plantar pressures for the assessment of foot function during standing and walking, particularly when barefoot, and are the most accurate for measuring plantar pressures. For reliable data, two step protocol prior to contacting the pressure plate is recommended. In-shoe systems are most suitable for measuring plantar pressures in the field during daily living or dynamic sporting movements as they are often wireless and can measure multiple steps. They are the most suitable equipment to assess the effects of footwear and orthotics on plantar pressures. However, they typically have lower spatial resolution and sampling frequency than platform systems. Users of pressure measurement systems need to consider the suitability of the calibration procedures for their chosen application when selecting and using a pressure measurement system. For some applications, a bespoke calibration procedure is required to improve validity and reliability of the pressure measurement system. The testing machines that are commonly used for dynamic calibration of pressure measurement systems frequently have loading rates of less than even those found in walking, so the development of testing protocols that truly measure the loading rates found in many sporting movements are required. There is clear potential for AI techniques to assist in the analysis and interpretation of plantar pressure data to enable the more complete use of pressure system data in clinical diagnoses and monitoring.
期刊介绍:
The Foot is an international peer-reviewed journal covering all aspects of scientific approaches and medical and surgical treatment of the foot. The Foot aims to provide a multidisciplinary platform for all specialties involved in treating disorders of the foot. At present it is the only journal which provides this inter-disciplinary opportunity. Primary research papers cover a wide range of disorders of the foot and their treatment, including diabetes, vascular disease, neurological, dermatological and infectious conditions, sports injuries, biomechanics, bioengineering, orthoses and prostheses.