树木拓扑类型的数量

IF 1 2区 数学 Q1 MATHEMATICS
{"title":"树木拓扑类型的数量","authors":"","doi":"10.1007/s00493-024-00087-2","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Two graphs are of the same <em>topological type</em> if they can be mutually embedded into each other topologically. We show that there are exactly <span> <span>\\(\\aleph _1\\)</span> </span> distinct topological types of countable trees. In general, for any infinite cardinal <span> <span>\\(\\kappa \\)</span> </span> there are exactly <span> <span>\\(\\kappa ^+\\)</span> </span> distinct topological types of trees of size <span> <span>\\(\\kappa \\)</span> </span>. This solves a problem of van der Holst from 2005.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":"2 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Number of Topological Types of Trees\",\"authors\":\"\",\"doi\":\"10.1007/s00493-024-00087-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Two graphs are of the same <em>topological type</em> if they can be mutually embedded into each other topologically. We show that there are exactly <span> <span>\\\\(\\\\aleph _1\\\\)</span> </span> distinct topological types of countable trees. In general, for any infinite cardinal <span> <span>\\\\(\\\\kappa \\\\)</span> </span> there are exactly <span> <span>\\\\(\\\\kappa ^+\\\\)</span> </span> distinct topological types of trees of size <span> <span>\\\\(\\\\kappa \\\\)</span> </span>. This solves a problem of van der Holst from 2005.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00087-2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00087-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 如果两个图在拓扑上可以相互嵌入,那么它们就具有相同的拓扑类型。我们证明,可数树的拓扑类型恰好有(\aleph _1\)种不同的拓扑类型。一般来说,对于任意一个无限红心(\kappa \),大小为 \(\kappa \)的树恰好有 \(\kappa ^+\) 个不同的拓扑类型。这解决了 van der Holst 在 2005 年提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Number of Topological Types of Trees

Abstract

Two graphs are of the same topological type if they can be mutually embedded into each other topologically. We show that there are exactly \(\aleph _1\) distinct topological types of countable trees. In general, for any infinite cardinal \(\kappa \) there are exactly \(\kappa ^+\) distinct topological types of trees of size \(\kappa \) . This solves a problem of van der Holst from 2005.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信