{"title":"网格路径矩阵和阶乘","authors":"Carolina Benedetti-Velásquez, Kolja Knauer","doi":"10.1007/s00493-024-00085-4","DOIUrl":null,"url":null,"abstract":"<p>We characterize the quotients among lattice path matroids (LPMs) in terms of their diagrams. This characterization allows us to show that ordering LPMs by quotients yields a graded poset, whose rank polynomial has the Narayana numbers as coefficients. Furthermore, we study full lattice path flag matroids and show that—contrary to arbitrary positroid flag matroids—they correspond to points in the nonnegative flag variety. At the basis of this result lies an identification of certain intervals of the strong Bruhat order with lattice path flag matroids. A recent conjecture of Mcalmon, Oh, and Xiang states a characterization of quotients of positroids. We use our results to prove this conjecture in the case of LPMs.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lattice Path Matroids and Quotients\",\"authors\":\"Carolina Benedetti-Velásquez, Kolja Knauer\",\"doi\":\"10.1007/s00493-024-00085-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We characterize the quotients among lattice path matroids (LPMs) in terms of their diagrams. This characterization allows us to show that ordering LPMs by quotients yields a graded poset, whose rank polynomial has the Narayana numbers as coefficients. Furthermore, we study full lattice path flag matroids and show that—contrary to arbitrary positroid flag matroids—they correspond to points in the nonnegative flag variety. At the basis of this result lies an identification of certain intervals of the strong Bruhat order with lattice path flag matroids. A recent conjecture of Mcalmon, Oh, and Xiang states a characterization of quotients of positroids. We use our results to prove this conjecture in the case of LPMs.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00085-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00085-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We characterize the quotients among lattice path matroids (LPMs) in terms of their diagrams. This characterization allows us to show that ordering LPMs by quotients yields a graded poset, whose rank polynomial has the Narayana numbers as coefficients. Furthermore, we study full lattice path flag matroids and show that—contrary to arbitrary positroid flag matroids—they correspond to points in the nonnegative flag variety. At the basis of this result lies an identification of certain intervals of the strong Bruhat order with lattice path flag matroids. A recent conjecture of Mcalmon, Oh, and Xiang states a characterization of quotients of positroids. We use our results to prove this conjecture in the case of LPMs.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.