Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue
{"title":"可重用性报告:通过具有领域适应性的双线性注意力网络揭示生物医学双方位网络中的关联性","authors":"Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue","doi":"10.1038/s42256-024-00822-w","DOIUrl":null,"url":null,"abstract":"Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":null,"pages":null},"PeriodicalIF":18.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusability report: Uncovering associations in biomedical bipartite networks via a bilinear attention network with domain adaptation\",\"authors\":\"Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue\",\"doi\":\"10.1038/s42256-024-00822-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00822-w\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00822-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Reusability report: Uncovering associations in biomedical bipartite networks via a bilinear attention network with domain adaptation
Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.