可重用性报告:通过具有领域适应性的双线性注意力网络揭示生物医学双方位网络中的关联性

IF 18.8 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue
{"title":"可重用性报告:通过具有领域适应性的双线性注意力网络揭示生物医学双方位网络中的关联性","authors":"Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue","doi":"10.1038/s42256-024-00822-w","DOIUrl":null,"url":null,"abstract":"Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":null,"pages":null},"PeriodicalIF":18.8000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reusability report: Uncovering associations in biomedical bipartite networks via a bilinear attention network with domain adaptation\",\"authors\":\"Tao Xu, Haoyuan Shi, Wanling Gao, Xiaosong Wang, Zhenyu Yue\",\"doi\":\"10.1038/s42256-024-00822-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.\",\"PeriodicalId\":48533,\"journal\":{\"name\":\"Nature Machine Intelligence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.8000,\"publicationDate\":\"2024-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.nature.com/articles/s42256-024-00822-w\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00822-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

条件域对抗学习为提高基于深度学习的方法的普适性提供了一种前景广阔的方法。受条件域对抗网络功效的启发,Bai及其同事推出了DrugBAN,这是一种旨在明确学习药物与靶标之间成对局部相互作用的方法。DrugBAN 利用药物分子图和靶标蛋白质序列,采用条件域对抗网络来提高适应分布外数据的能力,从而确保新药-靶标配对的预测准确性。在此,我们研究了 DrugBAN 的可重用性,并在原始数据集之外的更广泛的生物医学环境中扩展了对其通用性的评估。我们采用了各种基于聚类的策略来重新分割源域和目标域,以评估 DrugBAN 的鲁棒性。我们还将这种跨域适应技术应用于细胞系-药物反应和突变-药物关联的预测。这项分析为更好地理解和建立适用于生物医学双元网络中链接预测任务的通用模板提供了一个起点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reusability report: Uncovering associations in biomedical bipartite networks via a bilinear attention network with domain adaptation

Reusability report: Uncovering associations in biomedical bipartite networks via a bilinear attention network with domain adaptation
Conditional domain adversarial learning presents a promising approach for enhancing the generalizability of deep learning-based methods. Inspired by the efficacy of conditional domain adversarial networks, Bai and colleagues introduced DrugBAN, a methodology designed to explicitly learn pairwise local interactions between drugs and targets. DrugBAN leverages drug molecular graphs and target protein sequences, employing conditional domain adversarial networks to improve the ability to adapt to out-of-distribution data and thereby ensuring superior prediction accuracy for new drug–target pairs. Here we examine the reusability of DrugBAN and extend the evaluation of its generalizability across a wider range of biomedical contexts beyond the original datasets. Various clustering-based strategies are implemented to resplit the source and target domains to assess the robustness of DrugBAN. We also apply this cross-domain adaptation technique to the prediction of cell line–drug responses and mutation–drug associations. The analysis serves as a stepping-off point to better understand and establish a general template applicable to link prediction tasks in biomedical bipartite networks. In early 2023, Bai and colleagues presented DrugBAN, an interpretable method for drug–target prediction. In this Reusability Report, Xu and colleagues reproduce the original findings and provide a careful exploration of cross-domain adaptability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
36.90
自引率
2.10%
发文量
127
期刊介绍: Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements. To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects. Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信