EdgeFace:边缘设备的高效人脸识别模型

Anjith George;Christophe Ecabert;Hatef Otroshi Shahreza;Ketan Kotwal;Sébastien Marcel
{"title":"EdgeFace:边缘设备的高效人脸识别模型","authors":"Anjith George;Christophe Ecabert;Hatef Otroshi Shahreza;Ketan Kotwal;Sébastien Marcel","doi":"10.1109/TBIOM.2024.3352164","DOIUrl":null,"url":null,"abstract":"In this paper, we present EdgeFace - a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. The proposed EdgeFace model achieved the top ranking among models with fewer than 2M parameters in the IJCB 2023 Efficient Face Recognition Competition. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 2","pages":"158-168"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EdgeFace: Efficient Face Recognition Model for Edge Devices\",\"authors\":\"Anjith George;Christophe Ecabert;Hatef Otroshi Shahreza;Ketan Kotwal;Sébastien Marcel\",\"doi\":\"10.1109/TBIOM.2024.3352164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present EdgeFace - a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. The proposed EdgeFace model achieved the top ranking among models with fewer than 2M parameters in the IJCB 2023 Efficient Face Recognition Competition. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"6 2\",\"pages\":\"158-168\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10388036/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10388036/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 EdgeFace - 一种轻量级高效人脸识别网络,其灵感来自 EdgeNeXt 的混合架构。通过有效结合 CNN 和 Transformer 模型以及低等级线性层的优势,EdgeFace 实现了针对边缘设备优化的出色人脸识别性能。所提出的 EdgeFace 网络不仅计算成本低、存储空间小,而且人脸识别精度高,适合在边缘设备上部署。在 IJCB 2023 高效人脸识别竞赛中,所提出的 EdgeFace 模型在参数少于 200 万的模型中名列前茅。在具有挑战性的基准人脸数据集上进行的大量实验证明,与最先进的轻量级模型和深度人脸识别模型相比,EdgeFace 模型的有效性和效率更高。我们的 EdgeFace 模型有 1.77M 个参数,在 LFW(99.73%)、IJB-B(92.67%)和 IJB-C (94.85%)上取得了最先进的结果,超过了计算复杂度更大的其他高效模型。复制实验的代码将公开发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EdgeFace: Efficient Face Recognition Model for Edge Devices
In this paper, we present EdgeFace - a lightweight and efficient face recognition network inspired by the hybrid architecture of EdgeNeXt. By effectively combining the strengths of both CNN and Transformer models, and a low rank linear layer, EdgeFace achieves excellent face recognition performance optimized for edge devices. The proposed EdgeFace network not only maintains low computational costs and compact storage, but also achieves high face recognition accuracy, making it suitable for deployment on edge devices. The proposed EdgeFace model achieved the top ranking among models with fewer than 2M parameters in the IJCB 2023 Efficient Face Recognition Competition. Extensive experiments on challenging benchmark face datasets demonstrate the effectiveness and efficiency of EdgeFace in comparison to state-of-the-art lightweight models and deep face recognition models. Our EdgeFace model with 1.77M parameters achieves state of the art results on LFW (99.73%), IJB-B (92.67%), and IJB-C (94.85%), outperforming other efficient models with larger computational complexities. The code to replicate the experiments will be made available publicly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信