通过空间校准学习局部-全局联合虹膜表征,用于通用演示攻击检测

Gaurav Jaswal;Aman Verma;Sumantra Dutta Roy;Raghavendra Ramachandra
{"title":"通过空间校准学习局部-全局联合虹膜表征,用于通用演示攻击检测","authors":"Gaurav Jaswal;Aman Verma;Sumantra Dutta Roy;Raghavendra Ramachandra","doi":"10.1109/TBIOM.2024.3355136","DOIUrl":null,"url":null,"abstract":"Existing Iris Presentation Attack Detection (IPAD) systems do not generalize well across datasets, sensors and subjects. The main reason for the same is the presence of similarities in bonafide samples and attacks, and intricate iris textures. The proposed DFCANet (Dense Feature Calibration Attention-Assisted Network) uses feature calibration convolution and residual learning to generate domain-specific iris feature representations at local and global scales. DFCANet’s channel attention enables the use of discriminative feature learning across channels. Compared to state-of-the-art methods, DFCANet achieves significant performance gains for the IIITD-CLI, IIITD-WVU, IIIT-CSD, Clarkson-15, Clarkson-17, NDCLD-13, and NDCLD-15 benchmark datasets. Incremental learning in DFCANet overcomes data scarcity issues and cross-domain challenges. This paper also pursues the challenging soft-lens attack scenarios. An additional study conducted over contact lens detection task suggests high domain-specific feature modeling capacities of the proposed network.","PeriodicalId":73307,"journal":{"name":"IEEE transactions on biometrics, behavior, and identity science","volume":"6 2","pages":"195-208"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Joint Local-Global Iris Representations via Spatial Calibration for Generalized Presentation Attack Detection\",\"authors\":\"Gaurav Jaswal;Aman Verma;Sumantra Dutta Roy;Raghavendra Ramachandra\",\"doi\":\"10.1109/TBIOM.2024.3355136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing Iris Presentation Attack Detection (IPAD) systems do not generalize well across datasets, sensors and subjects. The main reason for the same is the presence of similarities in bonafide samples and attacks, and intricate iris textures. The proposed DFCANet (Dense Feature Calibration Attention-Assisted Network) uses feature calibration convolution and residual learning to generate domain-specific iris feature representations at local and global scales. DFCANet’s channel attention enables the use of discriminative feature learning across channels. Compared to state-of-the-art methods, DFCANet achieves significant performance gains for the IIITD-CLI, IIITD-WVU, IIIT-CSD, Clarkson-15, Clarkson-17, NDCLD-13, and NDCLD-15 benchmark datasets. Incremental learning in DFCANet overcomes data scarcity issues and cross-domain challenges. This paper also pursues the challenging soft-lens attack scenarios. An additional study conducted over contact lens detection task suggests high domain-specific feature modeling capacities of the proposed network.\",\"PeriodicalId\":73307,\"journal\":{\"name\":\"IEEE transactions on biometrics, behavior, and identity science\",\"volume\":\"6 2\",\"pages\":\"195-208\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on biometrics, behavior, and identity science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10401986/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on biometrics, behavior, and identity science","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10401986/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现有的虹膜呈像攻击检测(IPAD)系统不能在不同数据集、传感器和对象之间很好地通用。其主要原因是真实样本和攻击存在相似性,而且虹膜纹理错综复杂。所提出的 DFCANet(密集特征校准注意力辅助网络)利用特征校准卷积和残差学习在局部和全局范围内生成特定领域的虹膜特征表征。DFCANet 的通道注意功能可跨通道使用判别特征学习。与最先进的方法相比,DFCANet 在 IIITD-CLI、IIITD-WVU、IIIT-CSD、Clarkson-15、Clarkson-17、NDCLD-13 和 NDCLD-15 基准数据集上取得了显著的性能提升。DFCANet 中的增量学习克服了数据稀缺问题和跨领域挑战。本文还探讨了具有挑战性的软镜攻击场景。对隐形眼镜检测任务进行的额外研究表明,所提出的网络具有很高的特定领域特征建模能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Joint Local-Global Iris Representations via Spatial Calibration for Generalized Presentation Attack Detection
Existing Iris Presentation Attack Detection (IPAD) systems do not generalize well across datasets, sensors and subjects. The main reason for the same is the presence of similarities in bonafide samples and attacks, and intricate iris textures. The proposed DFCANet (Dense Feature Calibration Attention-Assisted Network) uses feature calibration convolution and residual learning to generate domain-specific iris feature representations at local and global scales. DFCANet’s channel attention enables the use of discriminative feature learning across channels. Compared to state-of-the-art methods, DFCANet achieves significant performance gains for the IIITD-CLI, IIITD-WVU, IIIT-CSD, Clarkson-15, Clarkson-17, NDCLD-13, and NDCLD-15 benchmark datasets. Incremental learning in DFCANet overcomes data scarcity issues and cross-domain challenges. This paper also pursues the challenging soft-lens attack scenarios. An additional study conducted over contact lens detection task suggests high domain-specific feature modeling capacities of the proposed network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信