Kara Combs , Trevor J. Bihl , Subhashini Ganapathy
{"title":"利用生成式人工智能表征和识别视觉未知因素","authors":"Kara Combs , Trevor J. Bihl , Subhashini Ganapathy","doi":"10.1016/j.nlp.2024.100064","DOIUrl":null,"url":null,"abstract":"<div><p>Current state-of-the-art artificial intelligence (AI) struggles with accurate interpretation of out-of-library objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than real-world computer vision data sets. This paper proposes the Image Recognition Through Analogical Reasoning Algorithm (IRTARA) and its “generative AI” version called “GIRTARA” which describes and predicts out-of-library visual objects. IRTARA characterizes the out-of-library object through a list of words called the “term frequency list”. GIRTARA uses the term frequency list to predict what the out-of-library object is. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. The accuracy of GIRTARA’s predictions is calculated through a cosine similarity analysis. This study observed that IRTARA had consistent results in the term frequency list based on the three evaluation methods for the high-quality results and GIRTARA was able to obtain up to 65% match in terms of cosine similarity when compared to the out-of-library object’s true labels.</p></div>","PeriodicalId":100944,"journal":{"name":"Natural Language Processing Journal","volume":"7 ","pages":"Article 100064"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949719124000128/pdfft?md5=b907bb3498bdf74554a25eef96b3ee34&pid=1-s2.0-S2949719124000128-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Utilization of generative AI for the characterization and identification of visual unknowns\",\"authors\":\"Kara Combs , Trevor J. Bihl , Subhashini Ganapathy\",\"doi\":\"10.1016/j.nlp.2024.100064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Current state-of-the-art artificial intelligence (AI) struggles with accurate interpretation of out-of-library objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than real-world computer vision data sets. This paper proposes the Image Recognition Through Analogical Reasoning Algorithm (IRTARA) and its “generative AI” version called “GIRTARA” which describes and predicts out-of-library visual objects. IRTARA characterizes the out-of-library object through a list of words called the “term frequency list”. GIRTARA uses the term frequency list to predict what the out-of-library object is. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. The accuracy of GIRTARA’s predictions is calculated through a cosine similarity analysis. This study observed that IRTARA had consistent results in the term frequency list based on the three evaluation methods for the high-quality results and GIRTARA was able to obtain up to 65% match in terms of cosine similarity when compared to the out-of-library object’s true labels.</p></div>\",\"PeriodicalId\":100944,\"journal\":{\"name\":\"Natural Language Processing Journal\",\"volume\":\"7 \",\"pages\":\"Article 100064\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000128/pdfft?md5=b907bb3498bdf74554a25eef96b3ee34&pid=1-s2.0-S2949719124000128-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949719124000128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949719124000128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Utilization of generative AI for the characterization and identification of visual unknowns
Current state-of-the-art artificial intelligence (AI) struggles with accurate interpretation of out-of-library objects. One method proposed remedy is analogical reasoning (AR), which utilizes abductive reasoning to draw inferences on an unfamiliar scenario given knowledge about a similar familiar scenario. Currently, applications of visual AR gravitate toward analogy-formatted image problems rather than real-world computer vision data sets. This paper proposes the Image Recognition Through Analogical Reasoning Algorithm (IRTARA) and its “generative AI” version called “GIRTARA” which describes and predicts out-of-library visual objects. IRTARA characterizes the out-of-library object through a list of words called the “term frequency list”. GIRTARA uses the term frequency list to predict what the out-of-library object is. To evaluate the quality of the results of IRTARA, both quantitative and qualitative assessments are used, including a baseline to compare the automated methods with human-generated results. The accuracy of GIRTARA’s predictions is calculated through a cosine similarity analysis. This study observed that IRTARA had consistent results in the term frequency list based on the three evaluation methods for the high-quality results and GIRTARA was able to obtain up to 65% match in terms of cosine similarity when compared to the out-of-library object’s true labels.