具有二次非线性的四阶半线性问题的后验误差控制

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Carsten Carstensen, Benedikt Gräßle, Neela Nataraj
{"title":"具有二次非线性的四阶半线性问题的后验误差控制","authors":"Carsten Carstensen, Benedikt Gräßle, Neela Nataraj","doi":"10.1137/23m1589852","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 919-945, April 2024. <br/> Abstract. A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semilinear problems with trilinear nonlinearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space and, more important, modifies the trilinear term in the stream-function vorticity formulation of the incompressible two-dimensional Navier–Stokes equations and the von Kármán equations. This enables the first efficient and reliable a posteriori error estimates for the two-dimensional Navier–Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, [math] interior penalty, and weakly overpenalized symmetric interior penalty discretizations with piecewise quadratic polynomials.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"42 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Posteriori Error Control for Fourth-Order Semilinear Problems with Quadratic Nonlinearity\",\"authors\":\"Carsten Carstensen, Benedikt Gräßle, Neela Nataraj\",\"doi\":\"10.1137/23m1589852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 919-945, April 2024. <br/> Abstract. A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semilinear problems with trilinear nonlinearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space and, more important, modifies the trilinear term in the stream-function vorticity formulation of the incompressible two-dimensional Navier–Stokes equations and the von Kármán equations. This enables the first efficient and reliable a posteriori error estimates for the two-dimensional Navier–Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, [math] interior penalty, and weakly overpenalized symmetric interior penalty discretizations with piecewise quadratic polynomials.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1589852\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1589852","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 2 期第 919-945 页,2024 年 4 月。 摘要。针对两个具有三线性非线性和一般源的四阶半线性问题,对五种最低阶有限元方法进行了一般后验误差分析。准最优平滑器将源项扩展到离散试验空间,更重要的是,它修改了不可压缩二维 Navier-Stokes 方程和 von Kármán 方程的流函数涡度公式中的三线性项。这首次为莫雷、两个不连续 Galerkin、[math] 内部惩罚和弱超珀尔对称内部惩罚离散化的二维 Navier-Stokes 方程的流函数涡度公式提供了高效可靠的后验误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Posteriori Error Control for Fourth-Order Semilinear Problems with Quadratic Nonlinearity
SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 919-945, April 2024.
Abstract. A general a posteriori error analysis applies to five lowest-order finite element methods for two fourth-order semilinear problems with trilinear nonlinearity and a general source. A quasi-optimal smoother extends the source term to the discrete trial space and, more important, modifies the trilinear term in the stream-function vorticity formulation of the incompressible two-dimensional Navier–Stokes equations and the von Kármán equations. This enables the first efficient and reliable a posteriori error estimates for the two-dimensional Navier–Stokes equations in the stream-function vorticity formulation for Morley, two discontinuous Galerkin, [math] interior penalty, and weakly overpenalized symmetric interior penalty discretizations with piecewise quadratic polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信