用于检测学习环境中明确内容的超灵敏智能过滤器

IF 0.7 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Yong Yu;Xiaoguo Yin
{"title":"用于检测学习环境中明确内容的超灵敏智能过滤器","authors":"Yong Yu;Xiaoguo Yin","doi":"10.13052/jwe1540-9589.2314","DOIUrl":null,"url":null,"abstract":"In today's digital age, educational institutions aim to ensure safe learning environments in the light of pervasive explicit and inappropriate content. This study proposes an innovative approach to enhance safety by integrating convolutional neural networks (CNNs) for visual analysis with an intuitionistic fuzzy logic (IFL) filter for explicit content identification. Additionally, it utilizes GPT-3 to generate contextual warnings for users. A large-scale dataset comprising explicit and educational materials is used to evaluate the system. The results show that this hypersensitive filter has high accuracy performance, particularly in handling ambiguous or borderline content. The proposed approach provides an advanced solution to tackle the challenges of detecting explicit content and promotes safer learning environments by show-casing the potential of combining generative AI techniques across various domains.","PeriodicalId":49952,"journal":{"name":"Journal of Web Engineering","volume":"23 1","pages":"89-110"},"PeriodicalIF":0.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488433","citationCount":"0","resultStr":"{\"title\":\"A Hypersensitive Intelligent Filter for Detecting Explicit Content in Learning Environments\",\"authors\":\"Yong Yu;Xiaoguo Yin\",\"doi\":\"10.13052/jwe1540-9589.2314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's digital age, educational institutions aim to ensure safe learning environments in the light of pervasive explicit and inappropriate content. This study proposes an innovative approach to enhance safety by integrating convolutional neural networks (CNNs) for visual analysis with an intuitionistic fuzzy logic (IFL) filter for explicit content identification. Additionally, it utilizes GPT-3 to generate contextual warnings for users. A large-scale dataset comprising explicit and educational materials is used to evaluate the system. The results show that this hypersensitive filter has high accuracy performance, particularly in handling ambiguous or borderline content. The proposed approach provides an advanced solution to tackle the challenges of detecting explicit content and promotes safer learning environments by show-casing the potential of combining generative AI techniques across various domains.\",\"PeriodicalId\":49952,\"journal\":{\"name\":\"Journal of Web Engineering\",\"volume\":\"23 1\",\"pages\":\"89-110\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10488433\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Web Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10488433/\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Web Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10488433/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

在当今的数字时代,面对无处不在的明确和不当内容,教育机构的目标是确保安全的学习环境。本研究提出了一种创新方法,通过整合用于视觉分析的卷积神经网络(CNN)和用于明确内容识别的直觉模糊逻辑(IFL)过滤器来提高安全性。此外,它还利用 GPT-3 为用户生成上下文警告。评估该系统时使用了一个包含明确内容和教育材料的大型数据集。结果表明,这种超敏感过滤器具有很高的准确性,尤其是在处理模棱两可或边缘内容时。所提出的方法为应对检测露骨内容的挑战提供了先进的解决方案,并通过展示跨领域生成式人工智能技术的组合潜力,促进了更安全的学习环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hypersensitive Intelligent Filter for Detecting Explicit Content in Learning Environments
In today's digital age, educational institutions aim to ensure safe learning environments in the light of pervasive explicit and inappropriate content. This study proposes an innovative approach to enhance safety by integrating convolutional neural networks (CNNs) for visual analysis with an intuitionistic fuzzy logic (IFL) filter for explicit content identification. Additionally, it utilizes GPT-3 to generate contextual warnings for users. A large-scale dataset comprising explicit and educational materials is used to evaluate the system. The results show that this hypersensitive filter has high accuracy performance, particularly in handling ambiguous or borderline content. The proposed approach provides an advanced solution to tackle the challenges of detecting explicit content and promotes safer learning environments by show-casing the potential of combining generative AI techniques across various domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Web Engineering
Journal of Web Engineering 工程技术-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
62
审稿时长
9 months
期刊介绍: The World Wide Web and its associated technologies have become a major implementation and delivery platform for a large variety of applications, ranging from simple institutional information Web sites to sophisticated supply-chain management systems, financial applications, e-government, distance learning, and entertainment, among others. Such applications, in addition to their intrinsic functionality, also exhibit the more complex behavior of distributed applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信