{"title":"重复汽车驾驶踏板动作对老年人神经输出的影响","authors":"Shun Kunugi , Aleš Holobar , Akira Nakagoshi , Kyosuke Kawabe , Kohei Watanabe","doi":"10.1016/j.jelekin.2024.102883","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the ability of older adults to control pedal position angle and investigating whether this ability can be enhanced through practice may contribute to the prevention of traffic accidents. This study aimed to investigate repetitive effects on variability of the pedal position and neural drive during car-pedal operation in older adults. Thirteen older and 11 young adults performed 105 (21 sets × 5 repetitions) pedal angle control tasks with plantar flexor contraction. High-density surface electromyograms were recorded of triceps surae muscles. A cumulative spike train as a neural drive was calculated using continuously active motor unit activities. The coefficient of variation of the angle was higher in older (1.47 ± 1.06 %) than young (0.41 ± 0.21 %) adults in the first sets, and improved to 0.67 ± 0.51 % in the final sets in older adults only. There was no significant difference in neural drive variability between older and young adults. Our results suggest that repetition improves angular steadiness in older adults. However, this effect could not be explained by neural output which is estimated from lower threshold motor units that are continuously active.</p></div>","PeriodicalId":56123,"journal":{"name":"Journal of Electromyography and Kinesiology","volume":"76 ","pages":"Article 102883"},"PeriodicalIF":2.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of repetition of a car-driving pedal maneuver and neural output in older adults\",\"authors\":\"Shun Kunugi , Aleš Holobar , Akira Nakagoshi , Kyosuke Kawabe , Kohei Watanabe\",\"doi\":\"10.1016/j.jelekin.2024.102883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the ability of older adults to control pedal position angle and investigating whether this ability can be enhanced through practice may contribute to the prevention of traffic accidents. This study aimed to investigate repetitive effects on variability of the pedal position and neural drive during car-pedal operation in older adults. Thirteen older and 11 young adults performed 105 (21 sets × 5 repetitions) pedal angle control tasks with plantar flexor contraction. High-density surface electromyograms were recorded of triceps surae muscles. A cumulative spike train as a neural drive was calculated using continuously active motor unit activities. The coefficient of variation of the angle was higher in older (1.47 ± 1.06 %) than young (0.41 ± 0.21 %) adults in the first sets, and improved to 0.67 ± 0.51 % in the final sets in older adults only. There was no significant difference in neural drive variability between older and young adults. Our results suggest that repetition improves angular steadiness in older adults. However, this effect could not be explained by neural output which is estimated from lower threshold motor units that are continuously active.</p></div>\",\"PeriodicalId\":56123,\"journal\":{\"name\":\"Journal of Electromyography and Kinesiology\",\"volume\":\"76 \",\"pages\":\"Article 102883\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electromyography and Kinesiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1050641124000270\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electromyography and Kinesiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1050641124000270","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Effects of repetition of a car-driving pedal maneuver and neural output in older adults
Understanding the ability of older adults to control pedal position angle and investigating whether this ability can be enhanced through practice may contribute to the prevention of traffic accidents. This study aimed to investigate repetitive effects on variability of the pedal position and neural drive during car-pedal operation in older adults. Thirteen older and 11 young adults performed 105 (21 sets × 5 repetitions) pedal angle control tasks with plantar flexor contraction. High-density surface electromyograms were recorded of triceps surae muscles. A cumulative spike train as a neural drive was calculated using continuously active motor unit activities. The coefficient of variation of the angle was higher in older (1.47 ± 1.06 %) than young (0.41 ± 0.21 %) adults in the first sets, and improved to 0.67 ± 0.51 % in the final sets in older adults only. There was no significant difference in neural drive variability between older and young adults. Our results suggest that repetition improves angular steadiness in older adults. However, this effect could not be explained by neural output which is estimated from lower threshold motor units that are continuously active.
期刊介绍:
Journal of Electromyography & Kinesiology is the primary source for outstanding original articles on the study of human movement from muscle contraction via its motor units and sensory system to integrated motion through mechanical and electrical detection techniques.
As the official publication of the International Society of Electrophysiology and Kinesiology, the journal is dedicated to publishing the best work in all areas of electromyography and kinesiology, including: control of movement, muscle fatigue, muscle and nerve properties, joint biomechanics and electrical stimulation. Applications in rehabilitation, sports & exercise, motion analysis, ergonomics, alternative & complimentary medicine, measures of human performance and technical articles on electromyographic signal processing are welcome.