无发散逼近不可压缩流的切割有限元法:拉格朗日乘法器方法

IF 2.8 2区 数学 Q1 MATHEMATICS, APPLIED
Erik Burman, Peter Hansbo, Mats Larson
{"title":"无发散逼近不可压缩流的切割有限元法:拉格朗日乘法器方法","authors":"Erik Burman, Peter Hansbo, Mats Larson","doi":"10.1137/22m1542933","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 893-918, April 2024. <br/> Abstract. In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes’ equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche’s method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.","PeriodicalId":49527,"journal":{"name":"SIAM Journal on Numerical Analysis","volume":"32 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cut Finite Element Method for Divergence-Free Approximation of Incompressible Flow: A Lagrange Multiplier Approach\",\"authors\":\"Erik Burman, Peter Hansbo, Mats Larson\",\"doi\":\"10.1137/22m1542933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 893-918, April 2024. <br/> Abstract. In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes’ equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche’s method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.\",\"PeriodicalId\":49527,\"journal\":{\"name\":\"SIAM Journal on Numerical Analysis\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Numerical Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1542933\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1542933","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 数值分析期刊》第 62 卷第 2 期第 893-918 页,2024 年 4 月。 摘要在本论文中,我们设计了一种适用于斯托克斯方程边界值问题的低阶无发散有限元切割方法。在施加 Dirichlet 边界条件时,我们考虑采用 Nitsche 方法或稳定拉格朗日乘法器方法。在这两种方法中,速度的法向分量都使用乘数来限制,与标准压力近似法不同。在整个网格域内,近似速度的发散点均为零,我们得出了速度和压力的最佳误差估计值,其中误差常数与物理域与计算网格的交叉方式以及施加无发散条件的压力乘数的规则性无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cut Finite Element Method for Divergence-Free Approximation of Incompressible Flow: A Lagrange Multiplier Approach
SIAM Journal on Numerical Analysis, Volume 62, Issue 2, Page 893-918, April 2024.
Abstract. In this note, we design a cut finite element method for a low order divergence-free element applied to a boundary value problem subject to Stokes’ equations. For the imposition of Dirichlet boundary conditions, we consider either Nitsche’s method or a stabilized Lagrange multiplier method. In both cases, the normal component of the velocity is constrained using a multiplier, different from the standard pressure approximation. The divergence of the approximate velocities is pointwise zero over the whole mesh domain, and we derive optimal error estimates for the velocity and pressures, where the error constant is independent of how the physical domain intersects the computational mesh, and of the regularity of the pressure multiplier imposing the divergence-free condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.80
自引率
6.90%
发文量
110
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Numerical Analysis (SINUM) contains research articles on the development and analysis of numerical methods. Topics include the rigorous study of convergence of algorithms, their accuracy, their stability, and their computational complexity. Also included are results in mathematical analysis that contribute to algorithm analysis, and computational results that demonstrate algorithm behavior and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信