利用 GPS 数据检测异常驾驶。

Charles Boateng, Kwangsoo Yang, Seyedeh Gol Ara Ghoreishi, Jinwoo Jang, Muhammad Tanveer Jan, Joshua Conniff, Borko Furht, Sonia Moshfeghi, David Newman, Ruth Tappen, Jinnan Zhai, Monica Rosseli
{"title":"利用 GPS 数据检测异常驾驶。","authors":"Charles Boateng, Kwangsoo Yang, Seyedeh Gol Ara Ghoreishi, Jinwoo Jang, Muhammad Tanveer Jan, Joshua Conniff, Borko Furht, Sonia Moshfeghi, David Newman, Ruth Tappen, Jinnan Zhai, Monica Rosseli","doi":"10.1109/honet59747.2023.10374718","DOIUrl":null,"url":null,"abstract":"<p><p>Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.</p>","PeriodicalId":518005,"journal":{"name":"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)","volume":"2023 ","pages":"210-215"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979306/pdf/","citationCount":"0","resultStr":"{\"title\":\"Abnormal Driving Detection using GPS Data.\",\"authors\":\"Charles Boateng, Kwangsoo Yang, Seyedeh Gol Ara Ghoreishi, Jinwoo Jang, Muhammad Tanveer Jan, Joshua Conniff, Borko Furht, Sonia Moshfeghi, David Newman, Ruth Tappen, Jinnan Zhai, Monica Rosseli\",\"doi\":\"10.1109/honet59747.2023.10374718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.</p>\",\"PeriodicalId\":518005,\"journal\":{\"name\":\"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)\",\"volume\":\"2023 \",\"pages\":\"210-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10979306/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/honet59747.2023.10374718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 20th International Conference on Smart Communities: Improving Quality of Life using AI, Robotics and IoT (HONET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/honet59747.2023.10374718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

鉴于 GPS 数据集包含以一秒间隔捕获的驾驶记录,本研究解决了异常驾驶检测 (ADD) 的难题。该研究引入了一种综合方法,利用了数据预处理、降维和聚类技术。地面速度 (SOG)、地面航向 (COG)、经度 (lon) 和纬度 (lat) 数据被聚合成分钟级的片段。我们使用奇异值分解(SVD)来降低维度,从而通过 K-means 聚类来识别独特的驾驶模式。结果表明,该方法能有效区分正常和异常驾驶行为,为驾驶员安全、保险风险评估和个性化干预提供了有前途的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Abnormal Driving Detection using GPS Data.

Given a GPS dataset comprising driving records captured at one-second intervals, this research addresses the challenge of Abnormal Driving Detection (ADD). The study introduces an integrated approach that leverages data preprocessing, dimensionality reduction, and clustering techniques. Speed Over Ground (SOG), Course Over Ground (COG), longitude (lon), and latitude (lat) data are aggregated into minute-level segments. We use Singular Value Decomposition (SVD) to reduce dimensionality, enabling K-means clustering to identify distinctive driving patterns. Results showcase the methodology's effectiveness in distinguishing normal from abnormal driving behaviors, offering promising insights for driver safety, insurance risk assessment, and personalized interventions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信