{"title":"使用 VGG16-CBAM 对蝙蝠进行精细图像分类:以中国南方的 7 个马蹄蝠类群(CHIROPTERA: Rhinolophidae: Rhinolophus)为实例。","authors":"Zhong Cao, Kunhui Wang, Jiawei Wen, Chuxian Li, Yi Wu, Xiaoyun Wang, Wenhua Yu","doi":"10.1186/s12983-024-00531-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification.</p><p><strong>Results: </strong>In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods.</p><p><strong>Conclusion: </strong>Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.</p>","PeriodicalId":55142,"journal":{"name":"Frontiers in Zoology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983684/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fine-grained image classification on bats using VGG16-CBAM: a practical example with 7 horseshoe bats taxa (CHIROPTERA: Rhinolophidae: Rhinolophus) from Southern China.\",\"authors\":\"Zhong Cao, Kunhui Wang, Jiawei Wen, Chuxian Li, Yi Wu, Xiaoyun Wang, Wenhua Yu\",\"doi\":\"10.1186/s12983-024-00531-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification.</p><p><strong>Results: </strong>In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods.</p><p><strong>Conclusion: </strong>Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.</p>\",\"PeriodicalId\":55142,\"journal\":{\"name\":\"Frontiers in Zoology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10983684/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Zoology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12983-024-00531-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ZOOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Zoology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12983-024-00531-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
Fine-grained image classification on bats using VGG16-CBAM: a practical example with 7 horseshoe bats taxa (CHIROPTERA: Rhinolophidae: Rhinolophus) from Southern China.
Background: Rapid identification and classification of bats are critical for practical applications. However, species identification of bats is a typically detrimental and time-consuming manual task that depends on taxonomists and well-trained experts. Deep Convolutional Neural Networks (DCNNs) provide a practical approach for the extraction of the visual features and classification of objects, with potential application for bat classification.
Results: In this study, we investigated the capability of deep learning models to classify 7 horseshoe bat taxa (CHIROPTERA: Rhinolophus) from Southern China. We constructed an image dataset of 879 front, oblique, and lateral targeted facial images of live individuals collected during surveys between 2012 and 2021. All images were taken using a standard photograph protocol and setting aimed at enhancing the effectiveness of the DCNNs classification. The results demonstrated that our customized VGG16-CBAM model achieved up to 92.15% classification accuracy with better performance than other mainstream models. Furthermore, the Grad-CAM visualization reveals that the model pays more attention to the taxonomic key regions in the decision-making process, and these regions are often preferred by bat taxonomists for the classification of horseshoe bats, corroborating the validity of our methods.
Conclusion: Our finding will inspire further research on image-based automatic classification of chiropteran species for early detection and potential application in taxonomy.
期刊介绍:
Frontiers in Zoology is an open access, peer-reviewed online journal publishing high quality research articles and reviews on all aspects of animal life.
As a biological discipline, zoology has one of the longest histories. Today it occasionally appears as though, due to the rapid expansion of life sciences, zoology has been replaced by more or less independent sub-disciplines amongst which exchange is often sparse. However, the recent advance of molecular methodology into "classical" fields of biology, and the development of theories that can explain phenomena on different levels of organisation, has led to a re-integration of zoological disciplines promoting a broader than usual approach to zoological questions. Zoology has re-emerged as an integrative discipline encompassing the most diverse aspects of animal life, from the level of the gene to the level of the ecosystem.
Frontiers in Zoology is the first open access journal focusing on zoology as a whole. It aims to represent and re-unite the various disciplines that look at animal life from different perspectives and at providing the basis for a comprehensive understanding of zoological phenomena on all levels of analysis. Frontiers in Zoology provides a unique opportunity to publish high quality research and reviews on zoological issues that will be internationally accessible to any reader at no cost.
The journal was initiated and is supported by the Deutsche Zoologische Gesellschaft, one of the largest national zoological societies with more than a century-long tradition in promoting high-level zoological research.