评估使用合成抗体抗原数据集进行统计推断的可行性。

IF 0.9 4区 数学 Q3 Mathematics
Thomas Minotto, Philippe A Robert, Ingrid Hobæk Haff, Geir K Sandve
{"title":"评估使用合成抗体抗原数据集进行统计推断的可行性。","authors":"Thomas Minotto, Philippe A Robert, Ingrid Hobæk Haff, Geir K Sandve","doi":"10.1515/sagmb-2023-0027","DOIUrl":null,"url":null,"abstract":"<p><p>Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.</p>","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"23 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessing the feasibility of statistical inference using synthetic antibody-antigen datasets.\",\"authors\":\"Thomas Minotto, Philippe A Robert, Ingrid Hobæk Haff, Geir K Sandve\",\"doi\":\"10.1515/sagmb-2023-0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.</p>\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2023-0027\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2023-0027","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在数据稀缺的情况下,模拟框架有助于对预测模型进行压力测试,或确定模型对特定数据分布的敏感性。此类框架通常需要再现多层次的数据复杂性,包括模拟组件之间相互作用隐含产生的新特性。抗体-抗原结合是一种复杂的机制,通过这种机制,抗体序列能以高亲和力包裹抗原。在本研究中,我们使用了一个三维晶格上抗体-抗原折叠和结合的合成模拟框架,其中包括两种分子空间构象的全部细节。我们研究了这一框架如何产生新的特性,特别是氨基酸的物理邻近性、它们在结合界面上的存在或序列的结合状态,并将其与结合预测统计模型中氨基酸的单个和成对贡献联系起来。我们的研究表明,从简单的逻辑回归模型中学习到的权重与参与结合的氨基酸的部分而非全部特征相一致,而且可以丰富预测序列结合模式。特别是,主效应与序列结合任何抗原的能力相关,而统计交互作用与序列特异性相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessing the feasibility of statistical inference using synthetic antibody-antigen datasets.

Simulation frameworks are useful to stress-test predictive models when data is scarce, or to assert model sensitivity to specific data distributions. Such frameworks often need to recapitulate several layers of data complexity, including emergent properties that arise implicitly from the interaction between simulation components. Antibody-antigen binding is a complex mechanism by which an antibody sequence wraps itself around an antigen with high affinity. In this study, we use a synthetic simulation framework for antibody-antigen folding and binding on a 3D lattice that include full details on the spatial conformation of both molecules. We investigate how emergent properties arise in this framework, in particular the physical proximity of amino acids, their presence on the binding interface, or the binding status of a sequence, and relate that to the individual and pairwise contributions of amino acids in statistical models for binding prediction. We show that weights learnt from a simple logistic regression model align with some but not all features of amino acids involved in the binding, and that predictive sequence binding patterns can be enriched. In particular, main effects correlated with the capacity of a sequence to bind any antigen, while statistical interactions were related to sequence specificity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信